general navigation structure general satellite info ilrs support retroreflector info center of mass site performance info

LARES - LAser RElativity Satellite

Jump to: Mission Objectives, Mission Instrumentation, Mission Parameters, Additional Information

Mission Photos:
LARES satellite

LARES satellite

LARES-2 satellite

LARES-2 satellite

Courtesy of ASI

Mission Objectives:

LARES and LARES-2 will achieve important measurements in gravitational physics, General Relativity, space geodesy and geodynamics, in particular, together with the LAGEOS-1 and LAGEOS-2 satellites and with the GRACE models, it will provide a very accurate determination of the Earth gravitomagnetic field and of the Lense-Thirring effect.

Mission Instrumentation:

The LARES satellite is covered with 92 uncoated cube corner reflectors made from Suprasil 311. Each cube measures: height=27.889 mm, diameter=38.10 mm.

The LARES-2 satellite is covered with 303 uncoated cube corner reflectors made from Fused silica Corning 7980. Each cube measures: height=19.05 +/- 0.25 mm, diameter=25.4 mm.

Mission Parameters:
Satellite LARES LARES-2
Expected Life: Many decades Many decades
Primary Applications: Relativity Relativity
COSPAR ID: 1200601 2208001
SIC Code: 5987 5988
Satellite Catalog (NORAD) Number: 38077 53105
Launch Date: 13-Feb-2012 13-Jul-2022
Satellite Radius: 182 mm 212 mm
RRA Shape: Sphere Sphere
Reflectors: 92 corner cubes 303 corner cubes
Size of Reflector: 38.10 mm diameter 25.4 mm diameter
Orbit: circular circular
Inclination: 69.5 degrees 70.16 degrees
Altitude: 1450 km 5899 km
Eccentricity: 0.0 Between 0 and 0.0025
Weight: 386.8 kg 297.5 kg
Additional Information:



  • Arnold, D. A., "Thermal-optical design of a geodetic satellite for one millimeter accuracy," Advances in Space Research, Volume 65, Issue 10, 2020, Pages 2276-2289, DOI: 10.1016/j.asr.2020.01.031
  • Ciufolini I., Matzner R., Paolozzi A. et al., (2019). "Satellite Laser-Ranging as a Probe of Fundamental Physics." Scientific Reports, 9(1):15881, doi: 10.1038/s41598-019-52183-9
  • Ciufolini I., Paolozzi A., Pavlis E.C. et al., (2019). "An improved test of the general relativistic effect of frame-dragging using the LARES and LAGEOS satellites", The European Physical Journal C, 79(10), 872, doi: 10.1140/epjc/s10052-019-7386-z
  • Ciufolini I., Paolozzi A., Pavlis E.C. et al. (2023). "The LARES 2 satellite, general relativity and fundamental physics", Euro. Phys. Journal C., 83(1), 87, doi: 10.1140/epjc/s10052-023-11230-6
  • Kucharski D., Lim H.C., Kirchner G. et al., (2014). "Spin Axis Precession of LARES Measured by Satellite Laser Ranging", IEEE Geoscience and Remote Sensing Letters, 11(3), 646-650, doi: 10.1109/LGRS.2013.2273561
  • Loomis B.D., Rachlin K.E., Luthcke S.B. (2019). "Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise". Geophys. Res. Lett, 46, 6910–6917, doi: 10.1029/2019GL082929
  • Loomis B., Rachlin K., Wiese D. et al. (2020). "Replacing GRACE/GRACE-FO C30 With Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change", Geophys. Res. Lett., 47, e2019GL085488, doi: 10.1029/2019GL085488
  • Lucchesi D.M., Anselmo L., Bassan M. et al. (2019). "General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives", Universe, 5, 141, doi: 10.3390/universe5060141
  • Lucchesi D., Visco M., Peron R., et al. (2020). "A 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites", Universe, 6(9), 139, doi: 10.3390/universe6090139
  • Paolozzi A. Ciufolini I., Vendittozzi C. (2011). "Engineering and scientific aspects of LARES satellite", Acta Astronautica, 69(3-4), 127-134, doi: 10.1016/j.actaastro.2011.03.005
  • Paolozzi A., Ciufolini I. (2012). "LARES successfully launched in orbit: Satellite and mission description", Acta Astronautica, 91, 313-321, doi: 10.1016/j.actaastro.2013.05.011
  • Paolozzi A., Ciufolini I., Paris C., Sindoni G. (2015). "LARES: A New Satellite Specifically Designed for Testing General Relativity", International Journal of Aerospace Engineering, 341384, doi: 10.1155/2015/341384
  • Rodriguez J., Appleby G., Otsubo T. (2019). "Upgraded modelling for the determination of centre of mass corrections of geodetic SLR satellites: impact on key parameters of the terrestrial reference frame", J. Geodesy, 93(12), 2553-2568, doi: 10.1007/s00190-019-01315-0