-->
general navigation structure general satellite info ilrs support retroreflector info center of mass site performance info

LARES - LAser RElativity Satellite

Jump to: Mission Objectives, Mission Instrumentation, Mission Parameters, Additional Information

Mission Photos:
LARES satellite

LARES satellite

LARES-2 satellite

LARES-2 satellite

Courtesy of ASI


Mission Objectives:

LARES and LARES-2 will achieve important measurements in gravitational physics, General Relativity, space geodesy and geodynamics, in particular, together with the LAGEOS-1 and LAGEOS-2 satellites and with the GRACE models, it will provide a very accurate determination of the Earth gravitomagnetic field and of the Lense-Thirring effect.

Mission Instrumentation:

The LARES satellite is covered with 92 uncoated cube corner reflectors made from Suprasil 311. Each cube measures: height=27.889 mm, diameter=38.10 mm.

The LARES-2 satellite is covered with 303 uncoated cube corner reflectors made from Fused silica Corning 7980. Each cube measures: height=19.05 +/- 0.25 mm, diameter=25.4 mm.

Mission Parameters:
Satellite LARES LARES-2
Sponsor: ASI/ESA ASI/ESA
Expected Life: Many decades Many decades
Primary Applications: Relativity Relativity
COSPAR ID: 1200601 2208001
SIC Code: 5987 5988
Satellite Catalog (NORAD) Number: 38077 53105
Launch Date: 13-Feb-2012 13-Jul-2022
Satellite Radius: 182 mm 212 mm
RRA Shape: Sphere Sphere
Reflectors: 92 corner cubes 303 corner cubes
Size of Reflector: 38.10 mm diameter 25.4 mm diameter
Orbit: circular circular
Inclination: 69.5 degrees 70.16 degrees
Altitude: 1450 km 5896 km
Eccentricity: 0.0 0.00005
Weight: 386.8 kg 297.5 kg
Additional Information:

Websites:

Publications:

  • Lucchesi D., Visco M., Peron R., Bassan M., Pucacco Gl., Pardini C., Anselmo L., Magnifico C. (2020). "A 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites", Universe, 6(9), 139, DOI: 10.3390/universe6090139
  • Loomis, B., Rachlin, K., Wiese D. et al., (2020), "Replacing GRACE/GRACE-FO C30 With Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change", Geophys. Res. Lett., 47, e2019GL085488, DOI: 10.1029/2019GL085488
  • Ciufolini, I., Matzner, R., Paolozzi, A. et al., (2019), "Satellite Laser-Ranging as a Probe of Fundamental Physics," Scientific Reports, 9(1):15881, DOI: 10.1038/s41598-019-52183-9
  • Ciufolini, I., Paolozzi, A., Pavlis, E.C. et al., (2019), "An improved test of the general relativistic effect of frame-dragging using the LARES and LAGEOS satellites," The European Physical Journal C, 79(10), 872, DOI: 10.1140/epjc/s10052-019-7386-z
  • Loomis, B.D., Rachlin, K.E., and S.B. Luthcke (2019), "Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise", Geophys. Res. Lett, 46, 6910–6917, DOI: 10.1029/2019GL082929
  • Lucchesi, D.M., Anselmo, L., Bassan, M. et al., (2019), "General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives", Universe, 5,141, DOI: 10.3390/universe5060141
  • Pearlman, M., Arnold, D., Davis, M. et al., (2019), "Laser geodetic satellites: a high-accuracy scientific tool", J. Geodesy, 93(11), pp. 2181-2194, DOI: 10.1007/s00190-019-01228-y
  • Rodriguez, J., Appleby G., and T. Otsubo (2019), "Upgraded modelling for the determination of centre of mass corrections of geodetic SLR satellites: impact on key parameters of the terrestrial reference frame", J. Geodesy, 93(12), 2553-2568, DOI: 10.1007/s00190-019-01315-0
  • Bloßfeld, M., Rudenko, S., Kehm, A. et al., (2018), "Consistent estimation of geodetic parameters from SLR satellite constellation measurements", J. Geodesy, 92(9), pp. 1003-1021, DOI: 10.1007/s00190-018-1166-7
  • Visco, M. and D. Lucchesi (2018), "Comprehensive model for the spin evolution of the LAGEOS and LARES satellites", Phys. Rev. D., 98, 044034, DOI: 10.1103/PhysRevD.98.044034
  • Pardini, C., Anselmo, L., Lucchesi, D.M., Peron, R., "On the secular decay of the LARES semi-major axis," Acta Astronautica, 140, pp.469–477, 2017, DOI: 10.1016/j.actaastro.2017.09.012
  • Paolozzi, A. Ciufolini, I., Paris, C. and G. Sindoni (2015), "LARES: A New Satellite Specifically Designed for Testing General Relativity", International Journal of Aerospace Engineering, 341384, DOI: 10.1155/2015/341384
  • Sosnica, K., Jäggi, A., Meyer, U. et al., (2015), "Time variable Earth's gravity field from SLR satellites", J. Geodesy, 89(10), pp. 945-960, DOI: 10.1007/s00190-015-0825-1
  • Kucharski, D. Lim, H.C., Kirchner, G. et al., (2014), "Spin Axis Precession of LARES Measured by Satellite Laser Ranging" IEEE Geoscience and Remote Sensing Letters, 11(3), pp. 646-650, DOI: 10.1109/LGRS.2013.2273561
  • Paolozzi, A. and I. Ciufolini (2012, "LARES successfully launched in orbit: Satellite and mission description", Acta Astronautica, 91, pp. 313-321, DOI: 10.1016/j.actaastro.2013.05.011
  • Paolozzi, A. Ciufolini, I., and C. Vendittozzi (2011), "Engineering and scientific aspects of LARES satellite", Acta Astronautica, 69(3-4), pp. 127-134, DOI: 10.1016/j.actaastro.2011.03.005