NASA will be performing network maintenance on Tuesday, May 11 from 3:00pm - 8:00pm (1900 UTC - 0000 UTC). You may experience network difficulties accessing the ILRS website. You may experience outages as long as 15 minutes and multiple short (several minute) intermittent outages as well during the maintenance window.

general navigation structure general satellite info ilrs support retroreflector info center of mass site performance info

LARES - LAser RElativity Satellite

Jump to: Mission Objectives, Mission Instrumentation, Mission Parameters, Additional Information

Mission Photos:
LARES satellite

LARES satellite

LARES-2 satellite

LARES-2 satellite

Courtesy of ASI


Mission Objectives:

LARES and LARES-2 will achieve important measurements in gravitational physics, General Relativity, space geodesy and geodynamics, in particular, together with the LAGEOS-1 and LAGEOS-2 satellites and with the GRACE models, it will provide a very accurate determination of the Earth gravitomagnetic field and of the Lense-Thirring effect.

Mission Instrumentation:

The LARES satellite is covered with 92 uncoated cube corner reflectors made from Suprasil 311. Each cube measures: height=27.889 mm, diameter=38.10 mm.

The LARES-2 satellite is covered with 303 uncoated cube corner reflectors made from Fused silica Corning 7980. Each cube measures: height=19.05 +/- 0.25 mm, diameter=25.4 mm.

Mission Parameters:
Satellite LARES LARES-2
Sponsor: ASI/ESA ASI
Expected Life: Many decades Many decades
Primary Applications: Relativity Relativity
COSPAR ID: 1200601  
SIC Code: 5987 5988
Satellite Catalog (NORAD) Number: 38077  
Launch Date: 13-Feb-2012 2020-Jun
Satellite Radius: 182 mm 212 mm
RRA Shape: Sphere Sphere
Reflectors: 92 corner cubes 303 corner cubes
Size of Reflector: 38.10 mm diameter 25.4 mm diameter
Orbit: circular circular
Inclination: 69.5 degrees 70.16 degrees
Altitude: 1450 km 5899 km
Eccentricity: 0.0 between 0 and 0.0025
Weight: 386.8 kg  
Additional Information:

Websites:

Publications:

  • Lucchesi D., Visco M., Peron R., Bassan M., Pucacco Gl., Pardini C., Anselmo L., Magnifico C. (2020). "A 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites", Universe, 6(9), 139, DOI: 10.3390/universe6090139
  • Loomis, B., Rachlin, K., Wiese D. et al., (2020), "Replacing GRACE/GRACE-FO C30 With Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change", Geophys. Res. Lett., 47, e2019GL085488, DOI: 10.1029/2019GL085488
  • Ciufolini, I., Matzner, R., Paolozzi, A. et al., (2019), "Satellite Laser-Ranging as a Probe of Fundamental Physics," Scientific Reports, 9(1):15881, DOI: 10.1038/s41598-019-52183-9
  • Ciufolini, I., Paolozzi, A., Pavlis, E.C. et al., (2019), "An improved test of the general relativistic effect of frame-dragging using the LARES and LAGEOS satellites," The European Physical Journal C, 79(10), 872, DOI: 10.1140/epjc/s10052-019-7386-z
  • Loomis, B.D., Rachlin, K.E., and S.B. Luthcke (2019), "Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise", Geophys. Res. Lett, 46, 6910–6917, DOI: 10.1029/2019GL082929
  • Lucchesi, D.M., Anselmo, L., Bassan, M. et al., (2019), "General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives", Universe, 5,141, DOI: 10.3390/universe5060141
  • Pearlman, M., Arnold, D., Davis, M. et al., (2019), "Laser geodetic satellites: a high-accuracy scientific tool", J. Geodesy, 93(11), pp. 2181-2194, DOI: 10.1007/s00190-019-01228-y
  • Rodriguez, J., Appleby G., and T. Otsubo (2019), "Upgraded modelling for the determination of centre of mass corrections of geodetic SLR satellites: impact on key parameters of the terrestrial reference frame", J. Geodesy, 93(12), 2553-2568, DOI: 10.1007/s00190-019-01315-0
  • Bloßfeld, M., Rudenko, S., Kehm, A. et al., (2018), "Consistent estimation of geodetic parameters from SLR satellite constellation measurements", J. Geodesy, 92(9), pp. 1003-1021, DOI: 10.1007/s00190-018-1166-7
  • Visco, M. and D. Lucchesi (2018), "Comprehensive model for the spin evolution of the LAGEOS and LARES satellites", Phys. Rev. D., 98, 044034, DOI: 10.1103/PhysRevD.98.044034
  • Pardini, C., Anselmo, L., Lucchesi, D.M., Peron, R., "On the secular decay of the LARES semi-major axis," Acta Astronautica, 140, pp.469–477, 2017, DOI: 10.1016/j.actaastro.2017.09.012
  • Paolozzi, A. Ciufolini, I., Paris, C. and G. Sindoni (2015), "LARES: A New Satellite Specifically Designed for Testing General Relativity", International Journal of Aerospace Engineering, 341384, DOI: 10.1155/2015/341384
  • Sosnica, K., Jäggi, A., Meyer, U. et al., (2015), "Time variable Earth's gravity field from SLR satellites", J. Geodesy, 89(10), pp. 945-960, DOI: 10.1007/s00190-015-0825-1
  • Kucharski, D. Lim, H.C., Kirchner, G. et al., (2014), "Spin Axis Precession of LARES Measured by Satellite Laser Ranging" IEEE Geoscience and Remote Sensing Letters, 11(3), pp. 646-650, DOI: 10.1109/LGRS.2013.2273561
  • Paolozzi, A. and I. Ciufolini (2012, "LARES successfully launched in orbit: Satellite and mission description", Acta Astronautica, 91, pp. 313-321, DOI: 10.1016/j.actaastro.2013.05.011
  • Paolozzi, A. Ciufolini, I., and C. Vendittozzi (2011), "Engineering and scientific aspects of LARES satellite", Acta Astronautica, 69(3-4), pp. 127-134, DOI: 10.1016/j.actaastro.2011.03.005