Relative signal strengths from SLR tracking of the different retro-reflector targets onboard HEO satellites using the fullrate data set

Matthew Wilkinson and Graham Appleby NERC Space Geodesy Facility, UK

ILRS Workshop: SLR Tracking of GNSS Constellations

Summary

- Introduction
- Different High Earth Orbiting (HEO) satellite targets
- Return rates from fullrate data
 - Defining the 'return rate' and forming a value
 - What variables affect the return rate?
 - Reducing the impact of these variables
- Analysis of the Herstmonceux and Yarragadee fullrate data from 2007
- Plots of return rate against elevation and corrections
- Comparison of CompassM1 target and individual retro-reflectors to the other HEO satellites

• Conclusion

Introduction

- The ILRS Missions Working Group requested a tracking campaign for March 2009 encouraging stations to increase tracking of the CompassM1 satellite and the other HEO satellites.
- The aim was to test and compare the effectiveness of the relatively small array of un-coated cubes on the COMPASS-M1 satellite with respect to the three GLONASS, two GIOVE, two GPS and two ETALON geodetic satellites currently supported.
- This work follows a preliminary report presented at the Missions Working Group and Analysis Working Group meetings in April 2009 at the EGU.

The CompassM1 retro-reflector array. 31.6 x 28cm, 42 cubes of 33mm diameter of fused silica.

Introduction

- CompassM1 is the only HEO satellite to use un-coated retro-reflectors
- The GPS, Giove, Etalon and Glonass retro-reflectors were built by the Russian Institute for Space Device Engineering. Each is made from fused-quartz with the back reflective surfaces coated with aluminium.
- For the different satellites, the retro-reflector arrays are arranged in different shapes and sizes.

 The fullrate data files on CDDIS and EDC from contributing stations contain all successful returns from satellite laser ranging separated into satellite and station folders.

070110109136693112525978789005	132908473664944146380386895
070110109136893120825974709005	132908352664979146379590865
070110109136693127525980709005	132908231665014146378795335
07011010913/2293155022048709005	132907707665141146375080255
070110109136693157506084709005	132907746665152146375615495
070110109136699160025980709005	132907706665164146375350625
070110109106890162525906709005	132907665665176146375086075
070110109138893175025752709005	132907463665233146373763045
07011010913@293177522108709005	132907423665245146373498385
070110109136693185025976709005	132907301665280146372695685
070110109136893187525980709005	132907261665291146372440725
070110109136693192525984709005	132907180665314146371911975
070110109136693200825978709005	132907059865349146371119145
070110109136690202526102709005	132907018865361146370855175
070110109136899205026064709005	132906978665372146370590825
070110109136893207528032709005	132906937665384146370326955
070110109136693210026100709005	132906897665395146370062735
070110109136690217526030709005	132906775665430146369270585
070110109136693220025982709005	132906735665442146369006665
070110109136893222528084709005	132906694665453146368742855
070110109136693225025972709005	132906654665465146368479005
070110109136693227525982709005	132906613865476146368211895
070110109136693230025744709005	132906573865488146367951295
070110109136699237526026709005	132906451665522146367160005
070110109136693242526104709005	132906370665546146366632605

5320	58482880	3617350	4870	19	162595	-4	400
5320	98482880	3617349	4670	19	162595	-4	400
5320	98482880	3617349	4670	27	162595	-4	400
5320	98482880	3617347	4670	15	162595	-4	400
5320	98482880	3617347	4670	19	162595	-4	408
5320	98482880	3617347	4670	23	162595	-4	400
5320	98482880	3617347	4670	65	162595	-4	400
5320	98482880	3617346	4670	95	162595	-4	400
5320	98482880	3617346	4670	45	162595	-4	400
5320	98482880	3617345	4670	74	162595	-4	400
5320	98482880	3617345	4670	37	162595	-4	400
5320	98482880	3617345	4670	37	162595	-4	400
5320	98482880	3617344	4670	29	162595	-4	400
5320	98482880	3617344	4670	68	162595	-4	400
5320	98482880	3617344	4670	29	162595	-4	400
5320	98482880	3617344	4670	118	162595	-4	400
5320	98482880	2617344	4670	41	162595	-4	400
5320	98482880	3617343	4670	18	162595	-4	400
5320	98482880	3617343	4670	86	162595	-4	400
5320	98482880	3617343	4670	66	162595	-4	400
5320	98482880	3617343	4670	96	162595	-4	400
5320	98482880	3617343	4670	84	162595	-4	400
5320	98482880	3617342	4670	30	162595	-4	400
5320	98482880	3617342	4670	49	162595	-4	400
5320	98482880	3617242	4670	23	162595	~4	400

 A return rate can be calculated as the number of observation entries in the fullrate file within a time interval over the expected number of shots during this period.

Return rate = $\frac{\text{Number of observations}}{\text{Number of laser fires}}$

- The fullrate data used is this study was from **2007 onwards**.
- The CompassM1 and GioveB datasets include data from the beginning of SLR tracking, December 2008, and May 2008 respectively.

 Return rates in this investigation use the maximum and minimum epochs in a bin and the interval between the two to calculate the number of expected fires, dependent on the firing rate.

 Instead of the 300 second normal point bin, a 60 second bin was used to best avoid any gaps in data. Further to this data gaps of greater than 15 seconds were removed.

 Return rates in this investigation use the maximum and minimum epochs in a bin and the interval between the two to calculate the number of expected fires, dependent on the firing rate.

 Instead of the 300 second normal point bin, a 60 second bin was used to best avoid any gaps in data. Further to this data gaps of greater than 15 seconds were removed.

There are a number of factors that influence the observed return rate:

- Individual station ability
 - Separate analysis for individual stations
- Atmospheric transparency
 - Averaged over large amounts of data
- Beam divergence
 - Settings kept the same for all HEOs over time
- Satellite range
 - To be corrected for
- Filtering of the return signal and detection thresholds
 - Data entries removed so that the all data is comparable
- Retro-reflector targets
 - Remaining dominant variable in analysis

- In the following plots the resulting return rates are presented plotted against elevation.
- The Etalon satellite datasets are combined together.
- The GPS datasets are combined together
- The Glonass datasets (Glonass99, Glonass 102 and Glonass 109) are combined together.
- The Giove satellites have different retro-reflector targets and are treated independently.

Herstmonceux, UK

- Herstmonceux firing rate is effectively 24Hz using the semi-train.
- All Daytime data is excluded in this analysis as this was collected using the Narrowband filter
- All kHz tracking is excluded
- All data collected using Neutral Density filters was excluded.

Herstmonceux, UK

Return rates from the Herstmonceux SLR station from 2007

Herstmonceux, UK

Return rates from the Herstmonceux SLR station from 2007

Herstmonceux, UK

Average Return Rate vs Elevation for HEO satellites from Herstmonceux since 2007.00 at 24Hz

 Return rate is dependent upon the satellite range as a R⁴ relation. The distances to the satellites are:

CompassM1	21 500 km
Etalon 1 + 2	19,135 km
GioveA	23 916 km
GioveB	23 916 km
Glonass99 + 102 + 109	19,140 km
GPS35 + 36	20,030 km

 The return rates can therefore each be scaled according to the average range. The following results are normalised to a distance approximately that of Compass M1 range in the Zenith.

Herstmonceux, UK

Average Return Rate vs Elevation for HEO satellites from Herstmonceux since 2007.00 at 24Hz

Herstmonceux, UK

Average Return Rate vs Elevation for HEO satellites from Herstmonceux since 2007.00 at 24Hz

- Yaragadee is the most productive site in the ILRS network.
- In July 2009 a new MCP tube was installed using a voltage of 3000V and allowing daytime HEO observations. This data was <u>not</u> included in this analysis.
- The previous MCP used a voltage of 3600V which was increased to 3700V for most GPS passes and some other difficult GNSS passes.
- In this period no daytime observations of HEOs were made.
- The firing rate is 4Hz for HEO satellites.
- ND filters would only rarely be used.

Yarragadee, Australia

Return rates from the Yarragadee SLR station from 2007

Yarragadee, Australia

Return rates from the Yarragadee SLR station from 2007

Yarragadee, Australia

Average Return Rate vs Elevation for HEO satellites from Yaragadee since 2007.00 at 4Hz

Yarragadee, Australia

Average Return Rate vs Elevation for HEO satellites from Yaragadee since 2007.00 at 4Hz

• The retro-reflector targets have the following:

	No. cubes	Cube Diameter	Retro Target Area
CompassM1	42	3.3cm	359.2cm ²
Etalon 1 + 2	65.8 effectively ± 3.9 [#]	2.86cm*	422.7cm ²
GioveA	76	2.86cm*	488.2cm ²
GioveB	67	2.86cm*	430.4cm ²
Glonass99 + 102 + 109	112	2.86cm *	719.5cm ²
GPS35 + 36	32	2.86cm *	205.6cm ²

[#] Mironov et al "Etalon-1,-2 Center of Mass Correction and Array Reflectivity" 8th ILRS Workshop, Maryland, 1992

* Degnan, J.J., Pavlis, E.C., "Laser Ranging to GPS Satellites with Centimeter Accuracy", GPS World, Vol. 5, no. 9 Sept. 1994

Herstmonceux, UK

Average Return Rate vs Elevation for HEO satellites from Herstmonceux since 2007.00 at 24Hz

Herstmonceux, UK

Average Return Rate vs Elevation for HEO satellites from Herstmonceux since 2007.00 at 24Hz

Yarragadee, Australia

Average Return Rate vs Elevation for HEO satellites from Yaragadee since 2007.00 at 4Hz

Yarragadee, Australia

Average Return Rate vs Elevation for HEO satellites from Yaragadee since 2007.00 at 4Hz

	Target Area cm ²	Herstmonceux %	Herstmonceux per cm² %
Etalon 1 + 2	422.7	66.3 ± 12.5	56.4 ± 18.5
GioveA	435.1	78.7 ± 14.4	57.9 ± 14.4
GioveB	383.6	66.9 ± 17.7	55.9 ± 17.7
Glonass99 + 102 + 109	719.5	66.3 ± 12.8	33.1 ± 12.8
GPS35 + 36	205.6	28.7 ± 12.3	50.2 ± 12.3

	Target Area cm²	Herstmonceux %	Herstmonceu per cm² %	
Etalon 1 + 2	422.7	66.3 ± 12.5	56.4 ± 18.5	
GioveA	435.1	78.7 ± 14.4	57.9 ± 14.4	
GioveB	383.6	66.9 ± 17.7	55.9 ± 17.7	
Glonass99 + 102 + 109	719.5	66.3 ± 12.8	33.1 ± 12.8	
GPS35 + 36	205.6	28.7 ± 12.3	50.2 ± 12.3	

	Target Area cm²	Herstmonceux %	Herstmonceux per cm² %
Etalon 1 + 2	422.7	66.3 ± 12.5	56.4 ± 18.5
GioveA	435.1	78.7 ± 14.4	57.9 ± 14.4
GioveB	383.6	66.9 ± 17.7	55.9 ± 17.7
Glonass99 + 102 + 109	719.5	66.3 ± 12.8	33.1 ± 12.8
GPS35 + 36	205.6	28.7 ± 12.3	50.2 ± 12.3

	Target Area cm ²	Yarragadee %	Yarragadee per cm² %
Etalon 1 + 2	422.7	66.5 ± 5.4	56.3 ± 11.4
GioveA	435.1	93.8 ± 7.0	69.0 ± 7.0
GioveB	383.6	95.3 ± 7.1	79.6 ± 7.1
Glonass99 + 102 + 109	719.5	70.6 ± 6.0	35.2 ± 6.0
GPS35 + 36	205.6	37.4 ± 5.8	65.4 ± 5.8

	Target Area cm²	Yarragadee %	Yarragadee per cm ² %
Etalon 1 + 2	422.7	66.5 ± 5.4	56.3 ± 11.4
GioveA	435.1	93.8 ± 7.0	69.0 ± 7.0
GioveB	383.6	95.3 ± 7.1	79.6 ± 7.1
Glonass99 + 102 + 109	719.5	70.6 ± 6.0	35.2 ± 6.0
GPS35 + 36	205.6	37.4 ± 5.8	65.4 ± 5.8

	Target Area cm ²	Yarragadee %	Yarragadee per cm² %
Etalon 1 + 2	422.7	66.5 ± 5.4	56.3 ± 11.4
GioveA	435.1	93.8 ± 7.0	69.0 ± 7.0
GioveB	383.6	95.3 ± 7.1	79.6 ± 7.1
Glonass99 + 102 + 109	719.5	70.6 ± 6.0	35.2 ± 6.0
GPS35 + 36	205.6	37.4 ± 5.8	65.4 ± 5.8

Monument Peak, USA

Average Return Rate vs Elevation for HEO satellites from Monument Peak since 2007.00 at 5Hz

Monument Peak, USA

Average Return Rate vs Elevation for HEO satellites from Monument Peak since 2007.00 at 5Hz

 Estimate of return signal as a percentage of that from the CompassM1 per cm² of the retro-reflector targets

	No. cubes	Herstmonceux per cm ² %	Yarragadee per cm ² %	Monument Peak per cm² %	McDonald per cm² %
Etalon 1 + 2	65.8	56.4 ± 18.5	56.3 ± 11.4	58.4 ± 15.7	56.5 ± 20.4
GioveA	76	57.9 ± 14.4	69.0 ± 7.0	98.7 ± 16.7	75.1 ± 16.5
GioveB	67	55.9 ± 17.7	79.6 ± 7.1	104.1 ± 15.9	86.2 ± 18.6
Glonass99 + 102 + 109	112	33.1 ± 12.8	35.2 ± 6.0	29.3 ± 12.8	31.9 ± 17.9
GPS35 + 36	32	50.2 ± 12.3	65.4 ± 5.8	171.7 ± 14.7	103.5 ± 17.5

 Estimate of return signal as a percentage of that from the CompassM1 per cm² of the retro-reflector targets

	No. cubes	Herstmonceux per cm ² %	Yarragadee per cm ² %	Monument Peak per cm ² %	McDonald per cm² %
Etalon 1 + 2	65.8	56.4 ± 18.5	56.3 ± 11.4	58.4 ± 15.7	56.5 ± 20.4
GioveA	76	57.9 ± 14.4	69.0 ± 7.0	98.7 ± 16.7	75.1 ± 16.5
GioveB	67	55.9 ± 17.7	79.6 ± 7.1	104.1 ± 15.9	86.2 ± 18.6
Glonass99 + 102 + 109	112	33.1 ± 12.8	35.2 ± 6.0	29.3 ± 12.8	31.9 ± 17.9
GPS35 + 36	32	50.2 ± 12.3	65.4 ± 5.8	171.7 ± 14.7	103.5 ± 17.5

 Estimate of return signal as a percentage of that from the CompassM1 per cm² of the retro-reflector targets

	No. cubes	Herstmonceux per cm ² %	Yarragadee per cm ² %	Monument Peak per cm² %	McDonald per cm² %
Etalon 1 + 2	65.8	56.4 ± 18.5	56.3 ± 11.4	58.4 ± 15.7	56.5 ± 20.4
GioveA	76	57.9 ± 14.4	69.0 ± 7.0	98.7 ± 16.7	75.1 ± 16.5
GioveB	67	55.9 ± 17.7	79.6 ± 7.1	104.1 ± 15.9	86.2 ± 18.6
Glonass99 + 102 + 109	112	33.1 ± 12.8	35.2 ± 6.0	29.3 ± 12.8	31.9 ± 17.9
GPS35 + 36	32	50.2 ± 12.3	65.4 ± 5.8	171.7 ± 14.7	103.5 ± 17.5

Conclusions

- Analysis of the full rate dataset confirms the experience of the SLR observer that the GPS is a more difficult target and the new CompassM1 satellite is more successful.
- The return signal from the CompassM1 target is approximately 1.5 times stronger than the Glonass, Etalon and GioveB targets and 3 times stronger than the GPS targets.

- The CompassM1 has the highest return rate per unit array area.
- The return signals from the Etalon, GPS and Giove satellites per cm² are approximately 50% of the CompassM1 signal.
- The Glonass satellite return signal per cm² is approximately 30%.

