Contents

- Introduction
 - QZSS program
 - Concept of QZSS
 - User Benefits of QZSS
- System description
 - Space Segment
 - Ground Segment
 - Navigation Payload on QZS-1
 - Planned Signals
 - QZSS orbit and Clock estimation analyses
- Current Development Status
 - Space Segment
 - Ground Segment
 - Site survey for MS
 - > Development Schedule
- > Summary

Introduction QZSS program

- Japan is promoting research and development of the Quasi-Zenith Satellite System (QZSS), which is a regional satellite navigation system aiming at the GPS compliment and augmentation over Japan.
- The Japanese government decided to promote the QZSS program on the following step by step approach. (March 31, 2006)
 - Single mission: Navigation
 - Step by step development:

First step; Only one satellite will be launched in summer 2010

Technical validation and application demonstration Second Step; 2nd and 3rd satellites launch in several years after 1st satellite launch

System operation will be demonstrated.

Some national institutes of Japan participate in the QZSS project for the 1st satellite.

JAXA is taking charge of development of satellite bus system, navigation payload, ground system and operation for 1st satellite.

Introduction Concept of the QZSS

- Three satellites are in elliptical and inclined orbits in different orbital planes to pass over the same ground track.
- QZSS is designed so that at least one satellite out of three satellites exists near zenith over Japan.

(a=42,164km, e=0.06-0.09, i=39-47deg, Ω= 120deg apart)

QZSS orbit constellation

QZSS Ground Track

Introduction Concept of the QZSS

Minimum Elevation Contour for 3 QZS over 24 hours

* for maximum elevation of visible satellites

Introduction User Benefits of QZSS (1/2)

- > QZSS can provide a seamless service from high elevation angle.
- Increasing the availability of PNT services in downtown and mountainous areas.

Elevation from GEO Elevation=70deg

Introduction User Benefits of QZSS (2/2)

Availability Analysis in Urban Areas using 3D Simulation

Legend. • 0-20, • 20-40, • :40-60, •60-80, 80-90 90-100 % The time percentage of positioning availability in Ginza

Positioning availability is greatly improved by adding QZSS.

System Description Space Segment - QZS-1 -

System Description Ground Segment

9

System Description Navigation Payload on QZS-1

(previously: CRL)

System Description Planned Signals

Planned Signal List for QZSS

Generic Signal Name	Center Frequency	Notes
L1-C/A	1575.42MHz	GPS interoperable signals
L1C		Compatibility and interoperability with existing and future modernized GPS signals
L2C	1227.6MHz	
L5	1176.45MHz	
L1-SAIF*	1575.42MHz	Compatibility with GPS-SBASWDGPS
LEX	1278.75MHz	 Experimental Signal with higher data rate message (2Kbps) Compatibility with Galileo E6 signal

**L1-SAIF: L1-Submeter-class Augmentation with Integrity Function

System Description QZSS orbit and Clock estimation analyses

- Analyses were \geq performed on the 0.9 current conditions of 0.8 QZSS dynamic models 0.7 and monitor station locations and so on. 0.6 Accuracy of SIS-URE 0.5 (orbit + Clock) is 04 expected 30cm (1-0.3 sigma) so that high positioning accuracy 0.2
 - will be achieved using GPS + QZS.

0.1

12

Current Development status - Space segment -

NAV Payload PFM TVT (Jan 2009)

Satellite System (Aug 2009)

Current Development status - Ground segment -

TT&C-NAV Message Uplink Station (July 2009)@Okinawa, Japan14

@Sarobetsu (Sep 2009) @Guam (Aug 2009) QZSS Monitoring Station

Current Development status - Site Survey for MS -

The site surveys for Monitoring Station completed, and Installation construction starts.

Canberra

Geoscience Australia (GA)

> Hawaii

Kokee Park Geophysical Observatory (KPGC

Guam

National Weather Service Forecast Office (WFO)

Bangkok

Asian Institute of Technology (AIT)

Bangalore

ISRO Telemetry, Tracking and Command Network (ISTRAC)

@Mt.StromIo August 28-30,2007 15

Development Schedule

Summary

> QZSS Outline

- QZSS is a Japanese regional space-based navigation system
 - > Enhance GPS capability
 - > High level interoperability with GPS
- > 1st satellite will be launched in Summer of 2010

Development Status of the QZSS

- Manufacturing the space system and the ground system is completed, and an integrated test is being executed now.
- Site surveys for Monitoring stations have been completed, and an installation construction starts.