

Proposed Single Open Reflector for the GALILEO Mission

R.Neubert formerly with GFZ Potsdam, Germany, reinhart.neubert@web.de J.Neubert IB Neubert GmbH, Zurich, Switzerland, jakob@neubert.ch J.Munder SpaceTech GmbH, Immenstaad, Germany, jost.munder@spacetech-i.com L.Grunwaldt GFZ German Research Centre for Geosciences, Potsdam, Germany grun@gfz-potsdam.de

Far Field of the GALILEO Prism Array

velocity aberration 23.7....24.2 µrad

Expected Signature of the GALILEO Array

circular array, radius R=25cm, angle of incidence:

 $\alpha = 12^{\circ}$

Single shot precision: $\sigma = \frac{R}{2} \cdot \sin(\alpha)$ $\sigma = 2.6 cm (12^{\circ})$

Normal point precision: σ res

25 measurements required to get 5mm precision

The Proposed Open Reflector Geometry

Main Features of the Reflector:

no pulse spreading
high effective radar cross section
small (up to 20cm diam. front face)
low weight

Far Field of the Open Reflector with Conical Wave Front

Conical Shape of the Mirrors

introducing 2.1arsec offsets

Wave Front and Far Field from ASAP, $\alpha=0^{\circ}$

Wave Front and Far Field from ASAP, $\alpha = 12^{\circ}$

Far Field: Dependence on Orientation

Thermal Simulations of Orbital Heat Loads

Conclusion

The proposed open reflector is advantageous compared to the standard prism array because of:

no pulse spreading at all angles
equal or higher effective cross section but smaller dimension (higher antenna gain)
at low elevation (high angle of incidence) a single received photon is needed only to achieve the full resolution of the SLR system

Main problem area:

thermal distortion caused by sun heating should be kept small by the use of selected Zerodur substrate, dielectric coating and sun shield