K. Katsampalos¹, C. Kotsakis¹, M. Gianniou²

¹ Aristotle Univ. of Thessaloniki, Department of Geodesy and Surveying ² KTIMATOLOGIO S.A. (Hellenic Cadastre), Geodetic Department

Hellenic Terrestrial Reference System 2007 (HTRS07) : A regional realization of ETRS89 over Greece in support of HEPOS

Contents

- 1. HEPOS
- 2. EUREF stations in Greece
- 3. "Geophysical conditions" Station velocities
- 4. HTRS07: System Frame Epoch
- 5. HEPOS network adjustment
- Development of transformation model HTRS07 ↔ HGRS87
- 7. Software developed
- 8. Future work

HEPOS

- **HEllenic Positioning System.**
- Developed by KTIMATOLOGIO S.A.
- Consists of 98 GPS CORS distributed all over mainland Greece and (most of) the islands.
- 55 km average interstation distance in mainland Greece.
- Supports Real-Time network-based techniques (VRS, FKP, MAC) & Post Processing.
- Has already been used for EU co-funded VLS orthophotomap projects (since 25/2/2008).
- 25/5/2009 : available to the general public.

http://www.hepos.gr

98 Stations of HEPOS

EUREF Permanent Tracking Network

Greek EPN stations (operational during HEPOS development)

AUT1

TUC2

2005 / week 1320

NOA1

2006 / week 1379

Metsovo, 2009

Seedlesy & Geometics Englinearing Lation the Technical University of Great Concrete Shack TUC2

2004 / week 1294

ITRF2005 and Plate motion: Horizontal Site velocities with $\sigma < 3$ mm/y

NOTE: Greece moves SW (up to 3cm/y) relative to the Eurasia plate (!!)

magnitude higher than in central Europe !

2005.0-2008.8 : Horizontal trajectories (ETRF2005)

(Based on official EPN coordinate values)

2D velocities

ETRF2005ITRF2005AUT1: 1.03 cm/yr2.50 cm/yrNOA1: 2.80 cm/yr1.33 cm/yrTUC2: 3.00 cm/yr1.36 cm/yr

Fixed EUREF/EPN station for HEPOS network adjustment: AUT1

When we started (2007):

ITRF05/2000.0 4466283.488 ± 0.003 1896166.775 ± 0.002 4126096.773 ± 0.003

ETRF05/2000.0 4466283.737 ± 0.003 1896166.625 ± 0.002 4126096.618 ± 0.003

AUT1 was decided to be kept fixed to:

ETRF05/2007.5 4466283.7738 1896166.6498 4126096.5588

If we had used ETRF2000, instead of ETRF2005:

ETRF00/2000.0 4466283.731 ± 0.012 1896166.624 ± 0.006 4126096.617 ± 0.011

Using EUREF velocities...

ETRF00/2007.5 4466283.7617 1896166.6345 4126096.5450

Hence, HEPOS/HTRS07 is 1-2 cm off with respect to ETRF00

HEPOS

HTRS07 : Ref System for HEPOS

HEPOS reference system: ETRS89

in the frame : ETRF2005 (epoch :2007.5)

The selected epoch indicates the mid-time of all GPS measurements collected during the HEPOS development project.

HTRS07 is a realization of ETRS89 and it is in accordance to the INSPIRE Directive (15/5/2007).

TM07 : Projection for HTRS07

Transverse Mercator (one zone for all Greece)

- Central Meridian $: \lambda 0 = 24^{\circ}$ East
- Scale along CM
- Latitude of origin $: \varphi 0 = 0^{\circ}$ •
- False Easting •
- False Northing •

For Kastelorizo ONLY :

- Central Meridian
- Scale along CM
- Latitude of origin
- False Easting
- False Northing •

Reference Ellipsoid : GRS80

- : k0 = 0.9996
- : X0= 500 000.00 meters
- : Y0= -2 000 000.00 meters
 - : λ0 = 30° East
- : k0 = 1.0000
 - : φ0= 0°
 - : Χ0= 500 000.00 μέτρα
 - : Y0= -2 000 000.00 μέτρα

HEPOS 98-stations adjustment

Two weeks (1448 & 1449) of observations

Bernese 4.2

Solution in ITRF2005/2007.79 Memo has NOT been used Translation to ETRF2005/2007.5 DX=0.3839m, DY=-0.2912m, DZ=-0.2361m

- Preprocessing : Triple Differences
- Cutoff angle : 3 degrees
- Data sampling : 30seconds preprocessing / 180 seconds final
- Processing : lonosphere-free double differences
- Antenna calibrations : IGS05 model absolute values
- Troposphere : Dry-Neill
- Ionosphere : Regional model computation
- Datum definition : Twelve EUREF stations including AUT1, NOA1, TUC2 and GLSV, JOZE, MATE, NICO, NOT1, TRAB, WTZR, WTZR, RAMO
- Orbits : IGS final orbits and ERP parameters
- Planetary Ephemeris : DE200
- Ocean loading : Onsala FES2005 model
- Tidal model : Solid earth IERS 1996 conventions
- **rms accuracies** : $\sigma E=2mm$, sN=2mm, $\sigma H=5mm$

AUTh adjustment

HEPOS

Datum Transformation: HTRS07 ↔ HGRS87

- **HGRS87** is (still) the official (non geocentric) reference system for the Hellenic Cadastre.
- **24000** pillars in Greece, maintained by the Hellenic Geographic Millitary Service (HEGS).
- Available data : E, N or φ, λ and H (mostly from trigonometric leveling)
- 2470 pillars (10% of Greek triangulation network) re-measured to obtain ITRF/ETRF coordinates.

Point distribution around Thessaloniki. Apprx 8 points / 1:50,000 sheet

HEPOS

Software : ITRFyy <> ETRFxx (Boucher-Altamimi MEMO)

All 2470 pillars positioned in three reference frames

v a⁶ 2 Vecto

2.

ew Proj

Ĩ

36210 1

096A-KAF

È

ETRS-

Adjustment

- 6H-24H obs & precise orbits / Min constraints
- Solution in ITRF2000/2007.236
- Always check at NOA1 & TUC2
- Transformation to ETRF2000/2007.236 using B/A Memo

 $X_{\gamma\gamma}^{E}(t_{c}) = X_{\gamma\gamma}^{\prime}(t_{c}) + T_{\gamma\gamma} + \begin{pmatrix} 0 & -\dot{R}3_{\gamma\gamma} & \dot{R}2_{\gamma\gamma} \\ \dot{R}3_{\gamma\gamma} & 0 & -\dot{R}1_{\gamma\gamma} \\ -\dot{R}2_{\gamma\gamma} & \dot{R}1_{\gamma\gamma} & 0 \end{pmatrix} \times X_{\gamma\gamma}^{\prime}(t_{c}) \cdot (t_{c} - 19899)$

 Translation to ETRF2005/2007.5 using offset at AUT1 +0.020, +0.016, +0.004 m

- E 🗖 🖪 🔺 🔺 🛣 🚟 🖾

👗 🖽 🛷

🖪 🗇 🖽 🐬 🖹 🕒 🕅

- 8 ×

2470 pillars occupied to estimate and validate HTRS07 – HGRS87 parameters

Metsovo, 2009

Transformation & Validation points

HEPOS

Helmert-type 3D similarity transformation model (7 parameters)

$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \begin{bmatrix} (1+\delta s) & \varepsilon_z & -\varepsilon_y \\ -\varepsilon_z & (1+\delta s) & \varepsilon_x \\ \varepsilon_y & -\varepsilon_x & (1+\delta s) \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Estimated Parameters (HTRS07 to HGRS87)

parameter	value	σ
tx	203.437 m	± 0.265 m
ty	-73.461 m	± 0.285 m
tz	-243.594 m	± 0.244 m
۲3	-0″.170	± 0".007
εу	-0″.060	± 0".009
٤Z	-0″.151	± 0".009
scale	-0.294 ppm	± 0.031 ppm

Horizontal residuals at transformation & validation points

points	max	min	mean	σ	rms
2199	2.342	0.010	0.550	0.301	0.627
231	2.585	0.019	0.584	0.350	0.680

Regional horizontal residuals

HEPOS

Corrections on a 2x2 km Grid (computed using biharmonic spline interpolation)

points	max	min	mean	σ	rms
2199	0.049	0.000	0.007	0.004	0.008
231	0.244	0.006	0.068	0.047	0.082

HEPOS

Software for the transformation : HTRS07 <> HGRS87

- 7-parameter model + gridded corrections on a 2kmx2km grid
- Four versions, available from <u>www.hepos.gr</u>
- 8 cm rms transformation accuracy everywhere in Greece

Future Work

- Apply TWG recommendation for ETRF2000 (?)
- Official change from HGRS87 to HTRS07
- A reliable geodetically computed velocity field model for the tectonic motions in Greece (estimated up to 3 cm/ year). The contribution of the 98 HEPOS stations. Repeated (yearly?) adjustment of the network.
- Define a new national vertical reference system, in support of HEPOS.
- Compilation of a new geoidal model ?
- Use the new EGM08 model for the conversion h=H+N.

Thank you

Prof. K. Katsampalos, AUTh <u>kvek@topo.auth.gr</u>

Assc Prof. Ch. Kotsakis, AUTh <u>kotsaki@topo.auth.gr</u>

Asst Prof. M. Gianniou, KTIMATOLOGIO SA mgianniu@ktimatologio.gr

