Study on Space Debris Laser Ranging in Kunming Station

Reporter: Xiaoyu Pi

email: pixiaoyu@ynao.ac.cn

ILRS 2023 Virtual International Workshop on Laser Ranging (VIWLR)

Oct.20, 2023

Content

- Introduction
- Remote Tx and Rx DLR research
- Day-time DLR research

I. Intro: The Debris' Problem

Source: ESA – Space Environment Report

The Debris are posing threats...

- Large amount
- Small size
- Orbit resource
- Collision with other space objects

I. Intro: The Debris' Problem

Stromlo, 2002

Graz, 2011

Multi-station DLR experiment

- Laser fired from Graz station
- Received by Graz, Wettzell (400km),
 Zimmerwald(600km) and
 Herstmonceux(1200km)

Source: Kirchner, G., Koidl, F. et al. Multistatic Laser Ranging to Space Debris. (2014).

I. Intro: The Debris' Problem

Station	Energy	Pulse Width	Wavelength	Frequency /Hz	Ranging Distance/km	Target size
Graz	25mJ	10ns	532nm	1000	600-2500	0.3-15m ²
Stromlo	2.5J	5ns	1064nm	100	1200	≤15cm
Grasse	2.1J	5ns	532nm	10	840-1800	
Shanghai	300mJ	≤8ns	532nm	200	500-2600	0.3-20m ²
Changchun	60mJ	10ns	532nm	500	400-1800	0.9-26.1m ²
Kunming (YNAO)	0.4J-3J	5.7ns	1064nm	100	500-2800 /6200	0.04-20 m ²

- 1064nm Laser @ 100Hz
- Laser fired from the 53cm Binocular of Kunming station
- Received by both the 120cm Telescope in Kunming and the 180cm Telescope in Lijiang

Transmitter Parameter	Value		
Wavelength	1064 nm		
Repetition rate	100Hz		
Pulse Width	6.7ns		
Pulse Energy	≤3J/pulse		

- Event timer @Kunming: GT668
 - → 4 channels deployed
- Event timer @Lijiang: A033
 - \rightarrow only one channel available

The GT668 Event Timer

The A033 Event Timer

- Super-conducting Nano-wire Single Photon Detector
- SNSPD deployed at both stations
- Integrated signal in Lijiang due to limited ET input

SNSPD @ Lijiang Station: a Multi-channel-integrated type developed by SIMIT (Shanghai Institute of Microsystem and Information Technology)

• Simultaneous visibility for both stations

II. Day-time DLR research

- More ranging data
- Precise cataloging
- Monitoring and warning

Source: Steindorfer M A, Kirchner G, Koidl F, et al. Daylight space debris laser ranging[J]. Nature Communications, 2020."

II. Day-time DLR research

Day-time SLR

Distance residual plot of day-time laser ranging of Galileo 204 (~20 000km)

Day-time Noise Analysis

During ranging, with the increasement of the solar elevation from - 5.67° to 14.42°, the noise kept rising continuously while the SNR was decreasing

II. Day-time DLR research

Key Issue:

- High presice pointing
- Strong-noise filtering and signal identification

Precise Pointing

- Optical calibration during twilight
- Central position mark

Increase SNR

- Improve range gate accuracy
- Reduce gate-open duration
- Low BW filter

III. DLR at the Yunnan Observatories – Day-time DLR

Date/local time	Type/Code	sunrise/	sunset/	phase	Perigee/km	Apogee/km	RCS/m²
	Type/ Code	local time	local time	angle	religee/ kill		
2020.11 .13	ROCKET	07:23:55	-	168.15°	540	618	15.67
(10:38:04)	BODY/26474						
2020.11.23	ROCKET	07:30:57	-	67.09°	528	653	16.13
(07:31:17)	BODY/28932						
2020.11.24	ROCKET	07:31:40	-	105.80°	703	909	10.77
(08:33:40)	BODY/28480						
2020.11.27		07:33:49	-	67.80°	764	766	17.61
(07:42:07)	ENVISAT/27386						
2021.04.21		-	19:33:49	86.95°	1331	1343	8.59
(17:20:39)	TOPEX/22076						
2021.04.22		06:40:02	-	41.06°	764	766	17.61
(07:14:14)	ENVISAT/27386						
2021.04.22	ROCKET	06:40:02	-	139.99°	629	683	13.16
(07:46:33)	BODY/6155						
2021.04.22	ROCKET	-	19:34:17	94.33°	622	645	13.61
(18:55:02)	BODY/25861						
2021.04.22	ROCKET	-	19:34:17				
(19:16:07)	BODY/38341			104.17°	577	655	18.50
2021.04.22	ROCKET	-	19:34:17	102.79°	520	538	12.75
(19:26:12)	BODY/28738						
2021.04.22	ROCKET	-	19:34:17	98.01°	703	909	10.77
(19:32:00)	BODY/28480						
2021.05.04	ROCKET	06:30:47	-	123.03°	415	803	9.86
(06:51:13)	BODY/20453						

- Rocket body 28480
- RCS: 10.77m²
- Perigee 704km
- Apogee 908km

- Rocket body -26474
- RCS: 15.67m^2
- Perigee: 539km
- Apogee: 619km

From April to May 2021, experiments were conducted again, the observational and the experimental results were published in the "Laser & Optoelectronics Progress".

Thank you