

Recent progress in SPAD detectors for SLR and laser time transfer

Ivan Procházka 1, Roberta Bimbova 1, Josef Blazej 1 and Jan Kodet 1,2

presented at :

22nd International Workshop on Laser Ranging Yebes Observatory, Guadalajara, Spain November 7-11, 2022

1 Czech Technical University in Prague, Czech Republic 2 Technical University Munich, Germany

Outline

- K14 SPAD detector package 100um TE1 detection delay temperature drift reduction
- InGaAs/InP SPAD detector package for SLR at 1064 nm
 - active quenching and gating version key timing parametrs comparison to passive quenching

Summary and Conclusion

Si SPAD Detector 100um TE1 Upgrade

New SPAD detector for SLR and laser time transfer ground segment

https://cddis.nasa.gov/2019_Technical_Workshop/docs/2019/

- Based on 100um diameter SPAD chip K14 TE1 cooled to reduce its DCR
- The <u>passive compensation</u> of the detection delay temperature dependence
- <u>New comparator</u> was implemented
 => "flat" temperature delay dependence
- = > The over all temperature delay drift
 < 100 fs / K is possible

New comparator - temperature drift reduction the very first results

InGaAs/InP SPAD detector package for SLR at 1064 nm

- Commercial InGaAs/InP detection chip Princeton Lightwave PGA-200-1064 active area diam. 80 um, TE3, 1064 nm window
- Its application in LLR pioneered by C. Courde et al, 2016 and J. Eckl, 2017
- Our goal was to develop a detector package providing <u>mm accuracy and ps stability</u>
- Operating range <u>gates 0.1 10 us</u> wide

= > development & tests of an ACTIVE QUENCHING and gating circuit

Rev. Of Sci. Instruments, 91(5):056102; *May* 2020

InGaAs/InP SPAD detector package Active Quenching and Active Gating Circuit

analogy of K14 SPADs control circuit

PROBLEM

high speed – ns delays - and higher bias steps are needed typ. 10 - 20 V instead of 2 - 3 V

SOLUTION

We optimized the existing circuit to maximum possible biasing above breakdown voltage.

NEW POWER SUPPLY

- high stability of SPAD bias
- high stability of chip temperature

InGaAs/InP SPAD detector package, active quenching circuit Detection probability within gate

InGaAs/InP SPAD detector package, active quenching circuit Detection delay within gate

InGaAs/InP SPAD detector package, active quenching circuit Detection jitter — equal within entire gate

- Overall timing jitter 80 ps RMS
- Deconvoluting the laser pulse 60 ps FWHM
- = > SPAD jitter 52 ps RMS

IEEE Journal of Sel. Topis in Quant. El. PP(99):1-1 September 2021

InGaAs/InP SPAD detector package, active quenching circuit Detection overall stability TDEV

I.Prochazka, R.Bimbova, J.Blazej, J.Kodet, ILRS Workshop, Yebes, November 10, 2022

InGaAs/InP SPAD detector package, active quenching circuit Detector package + Power supply

- Standard SPAD detectors housing
- TE3 chip cooling to -40 +/- 0.2 °C
- Bias above break max 4.5 V

- InGaAs SPAD POWER SUPPLY
- Key parameters jitter det.probability effective DCR gate active signal output NIM temp drift stability TDEV

< 60 ps RMS > 20 % @ 1064nm < 160 kHz 0.1 to 10 us TTL , 50 Ohms fall time < 200 ps < 0.8 ps / K < 0.3 ps @ hours

Conclusion

- K14 SPAD detector package 100um TE1 detection delay temperature drift was reduced well below 200 fs /K
- InGaAs/InP SPAD detector package for SLR at 1064 nm was optimised for SLR and space debris laser ranging. Top stability over range gates of 0.1 to 10 us.
- The costs are timing resolution single shot (30 -> 60 ps) and photon detection probability (30% - > 20%)
- The detector was developed for SLR and space debris laser ranging at 1064 nm
- Thank you for your attention