

Day- and Night-time SLR at MHz Repetition Rate in Graz

Peiyuan Wang*, Michael Steindorfer, Franz Koidl, Georg Kirchner

<u>*peiyuan.wang@oeaw.ac.at</u>, Space Research Institute, Austrian Academy of Sciences

History -- focus on repetition

□ The first laser ranging was conducted October 31, 1964 at GSFC NASA, 1 Hz repetition rate

SLR (accuracy < ~3 meters) had 25 times better than microwave radars (accuracy < ~75 meters);

- □ kHz SLR concept was introduced by John Degnan (SLR2000) in 1990s
- Graz SLR , very early station to achieve kHz technique (Kirchner 2004)

neoMOS picosecond MOPA (Nd:YVO4)

MPD (PDM serial)

esentitues . . .

SMPL

-19

ÖAW (İWF

Requirements for MHz

neoLASE

neoLASE

Laser

Wavelength	1064nm (org.)	Pulseduration	< 10 ps
Max.power	> 40 Watt @ 1MHz, <mark>1064nm</mark>	Repetition rate	100 k10 M (int.) / Single 1M (ext.)
Max.pulseenergy	25 μJ @1MHz, <mark>532 nm</mark>	Beam quality	1.13; 1.14 M² (x;y)

Gingle photon sensitive detector

Sensitivearea	100 µm	Q.E. (typ.)	48%@ 550nm
Time accuracy	35 ps (NIM, typ. FWHM)	Dark count	<250 counts/sec
Dead time	77 ns	Work mode	Free/Output gating

Event timer

	A033/USB	TimeTagger Ultra
Input / trigger level	2 channels; NIM	18 channels; -2.5+2.5 trigger range
Single shot RMS resolution	34 ps typ.; 5 ps max.	8 ps typ.;
Dead time	50-70 ns	2.1 ns
Meas. rate	1 M events/s avg.;	70 M events/s cont.

Eventech A033/USB

SwabianInstrument TimeTagger Ultra

Home developments -- PC program & algorithm

-- Timing control (laser trigger & range gate)

Timing – 10 Hz vs. kHz

Range Gate Generator (RGG): temporal filtering

Backscatter collision avoidance @ kHz

- Backscatter: laser pulse diffusely reflected by atmosphere (Mie, Rayleigh...)
- Happens up to a few tens of km from ground
- Advantage: used to align direction of laser beam
- Disadvantage: trig false avalanches for detector if RG applied at same time; strong noise on detector, the detection probability reduced
- Solution: predict and apply a delay to laser firing, e.g. 60 µsec (~20 km in distance)

Camera image: laser backscatter used for direction correction

Repeatable laser backscatter collision/overlap cause significantly high noise on detector (Kirchner 2014)

. .

Burst mode - Timing for MHz

- <10 Hz system "backscatter collision" not happen
- kHz system "backscatter collision" avoid by shifting laser shots (60 μs)
- MHz laser shifting impossible, instead burst mode applied; transmitting phase only firing laser, detector gate off; receiving phase only collect returns, detector free running (night time only)
- Detector/ET/PC saturated (gate keep on for ToF) in receiving phase

First Result

High data quantity

3					
	MHz		Graz 2kHz system		
Satellites	Max. Return rate[%]	Returns per second *	Max. Return rate[%]	Returns per second	
Swarm-B	53.0	265,150	88.5	1,770	
Lageos-2	2.68	13,400	73.75	1,475	
Galileo214	0.18	890	11.00	220	
Etalon1	1.00	5,000	26.85	537	
Glonass141	1.01	5,050	39.60	792	
Beidou IGSO 5	0.16	800	3.55	71	

Night time

* Burst mode, only 500 k shots/sec sent at MHz; max. return rate calculation based on that.

- MHz SLR leads to significantly higher returns per second, for LEO (factor of ~200), MEO, IGSO; or
- Fast switch between passes

IWF.OEAW.AC.AT

Daytime: Difficulties & Solution for MHz RG

- Night time: detector in free-running mode, RG keep HIGH during whole RECEIVING phase
- Day time: Range Gate Generator (RGG) required, must gate for single return individually
 - -- PC is fast, but never real time; instead, Field Programmable Gate Array (FPGA) device used
 - -- Speed limit: 10-20 µs calculate time for one ToF/RG

- Does RG need to be calculated for every shot??
- -- Memory limit: FIFO capacity of FPGA for each RG (> 200 k epochs for GEO)

(1) Laser pulses fire with very "stable" intervals; one start epoch can be taken for several ToF calculation
(2) Once per 100 µsec to calculate ToF enough to reach 5 nsec RG accuracy even for LEO

Jitter measurement of laser start pulse interval (10° samples meas, with interval counter)				
Rep. rate	Max. [ps]	Min. [ps]	Peak-Peak [ps]	
100 kHz	10,474,943	10,474,536	407	
1 MHz	1,053,307	1,052,143	1,164	

"Propagated" RG for MHz daylight

- Intermittent (true RG):
 - -- Only calculate time of flight (ToF), and set RG epoch time to FIFO of FPGA
 - -- Enable/gate detector when RG condition fits (blue r[n,1])
- "Propagated" RG: add several "propagated" RG (yellow, r[n, 2...m]), which have fixed delays (the laser pulse interval)

Results (daytime)

Satellite	Rep. rate	Max. Return rate [%]*	Sun Altitude [deg]
Ajisai	100 k	3.8	≥ 51
	100 k	1.96	≥ 27
	100 k	4.7	> 25
Starlette	1 MHz	2.15	≥27
	1 MHz	2.64	≥12

* Burst mode, only 500 k shots/sec sent at MHz; max. return rate calculation based on that.

- With "propagated" RG enormous sky noises can be handled during daytime; seldom saturation of ET and detector;
- Ultra narrow filter (< 0.3 nm FWHM) need to be implemented as next step

Satellite Signatures

IWF.OEAW.AC.AT

Satellite Signature (Ajisai)

- Ajisai spins at the rate of 2-3 sec/revolution
- CCR fast switching clearly visible

13

Satellite Signature(LARES2)

- Lares2 has 1" CCR, smaller than 1.5" of Lageos1/2;
- Signature visible within MHz data; not within Graz 2 kHz system

Conclusions

- Successful demonstration on MHz repetition rate SLR in Graz at day and night
- Returns per NP increased by a fact of ~200 for some LEOs; ~ 10 for HEO/GEO
- "Propagated" range gate in FPGA make detector and ET working during day time
- 25 μJ/pulse, MHz SLR within single-photon regime MOST time
- Satellite signature are more significant than kHz SLR (Lares2 visible only at MHz)

single photon sensitivity + data quantity - time walk == ???

Questions

??Technology:

?? Efficiency of Real-time & post-processing software improvement

?? New key components (i.e. 1064 nm detector, event timer....)

?? Data storage locally, data center

?? Science & application:

?? NP formulating strategy: how many returns required for one NP?

- ?? Any improvement to accuracy/precision of NP and orbit determination
- ?? Any other usage of such massive data:

signature identification; attitude/motion determination....

-- please add more...

Thanks for your kind attention