

# Validation of ESA's IZN-1 station and overview of current station capabilities

DiGSS

Andrea Di Mira<sup>(1)</sup>, Emiliano Cordelli<sup>(1)</sup>, Tim Springer<sup>(1)</sup>, Florian Dilssner<sup>(1)</sup>, Sven Bauer<sup>(2)</sup>, Jens Steinborn<sup>(2)</sup>, Erik Schoenemann<sup>(1)</sup>, Tim Flohrer<sup>(1)</sup>, Clemens Heese<sup>(1)</sup>

<sup>(1)</sup> ESA/ESOC, Darmstadt, Germany <sup>(2)</sup> DiGOS Potsdam GmbH

22<sup>nd</sup> International Workshop of Laser Ranging, 7-11 November, Spain



### The ESA Laser Ranging Station – IZN-1

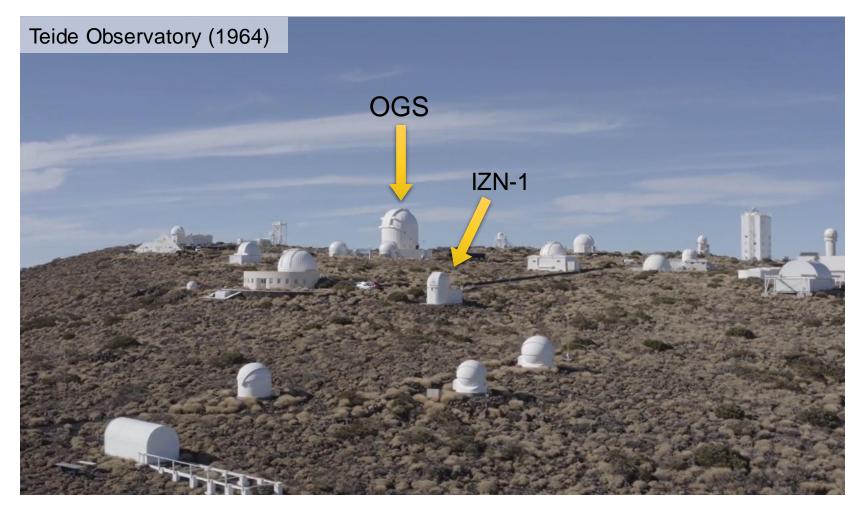


- Station site: Teide Observatory (2400 m) in Tenerife
- Turnkey solution based on COTS components
- Remote operations








DiGŚS

(IWF

**AIUB** 

evenech

### The Mountain Ridge Izaña





- Instituto de Astrofísica de Canarias (IAC) operates several telescopes
- Laser ranging requires coordination
- Multi-wavelength approach
- LTCS Laser Traffic Control System for deconflicting



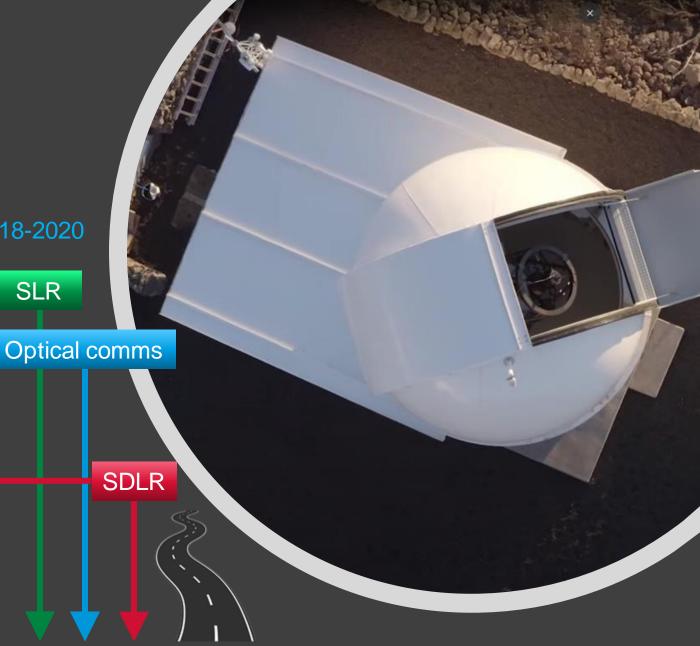
### **IZN-1** objectives

- Satellite Laser Ranging at 532 nm and 1064 nm
- Support ILRS as engineering station
- On-demand SLR support for missions/contingency cases
- Space debris active and passive observations








- LEO-DTE optical communications
- Testbed for European Industry
- Autonomous operations

#### ■ = ■ = = + II ≝ = II II = = # ■ ■ ■ ■ **|| || || || ||**

### **Development Timeline**

### ✓ Kick off 2018

- Design, procurement and factory pre-integration 2018-2020
- Deployment in Tenerife June 2021
- Optical Communication Mode June 2022
- ✓ Main Project Close-out: September 2022
- Upgrades for Space Debris Laser Ranging 2023





## DiG⊯S

### Main station subsystems

#### Telescope

- ASA AZ800
- Ritchey-Chretien 80 cm f/6.8
- Pointing accuracy <5 arcsec</li>
- 4 Nasmyth foci

### Dome

- Baader Planetarium 4.2 m
- Lower flap and rolling shutter



#### **Detector package**

- C-SPAD (532 nm)
  PESO Consulting
  - IR-SPAD (1064 nm) Princeton Lightwave/IWI
- Installed on the telescope fork mount

#### Laser package

- Passat Compiler 532/1064 nm
- Nd:YAG PRF 400 Hz
- Laser system piggy-back mounted on the telescope

| λ       | Pulse<br>width | Pulse<br>Energy | Divergence<br>(full-angle) |
|---------|----------------|-----------------|----------------------------|
| 532 nm  | 7 ps           | 380 µJ          | 28-32 µrad                 |
| 1064 nm | 8.5 ps         | 550 µJ          | 56-60 µrad                 |

### Main station subsystems





#### **Space Debris Camera**

- FLI ML 16070
- Pixel size 7.4 µm
- N of pixels: 4864 x 3232



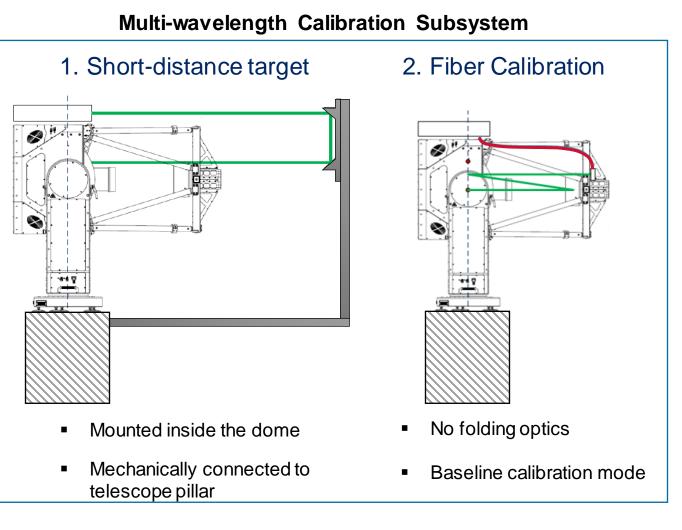
#### SLR equipment rack

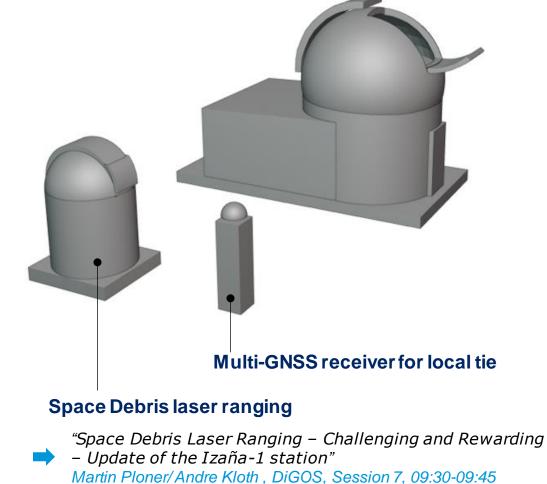
- Range Gate Generator
- Event timer A033-ET
- NTP
- GNSS receiver / OCXO DHQ
- Stability 2E-12 @1s



#### Laser Safety

- Emergency stops
- Interlocks
- ADS-B
- IR cameras

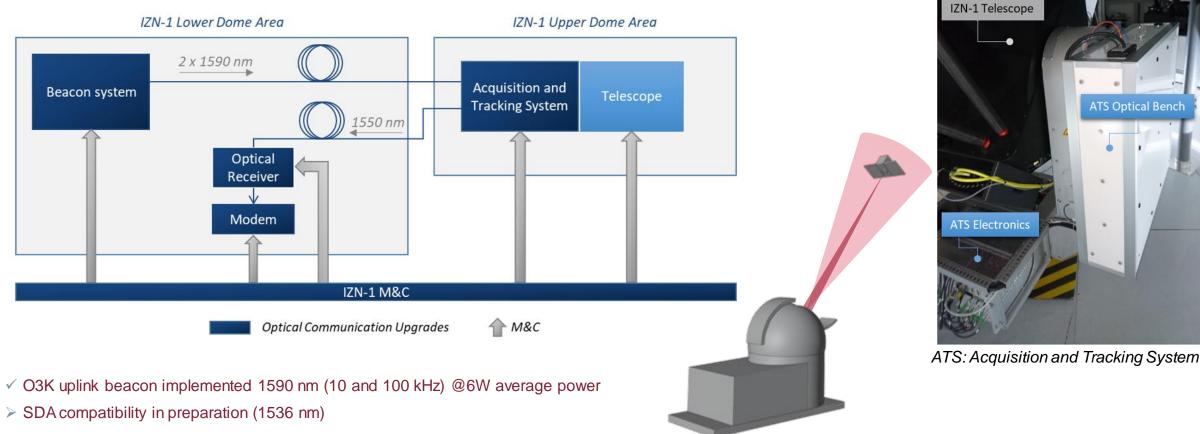


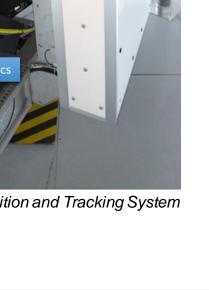


#### 

### Main station subsystems



**Upcoming Developments** 




**\_ → + ||**  <u>=</u> **\_ || || || \_ # # \_ → || || \* || + → ||** || **\*** || **→** || || ||

## **IZN-1** Upgrades for Optical Communications

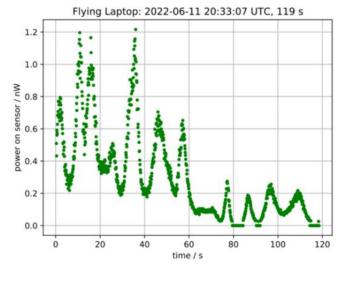
- Several satellites and constellations of CubeSats are being planned with laser communication terminal on-board
- CCSDS O3K (Optical On-Off keying) and SDA (v3) standard (Space Development Agency)
- Additional component installed (beacon, optical receiver, modem), infrastructure unchanged



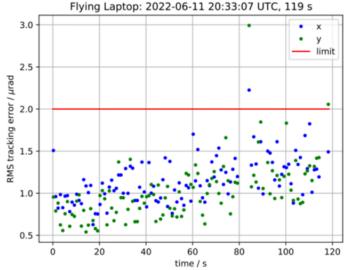


DiG


IZN-1 SLR laser

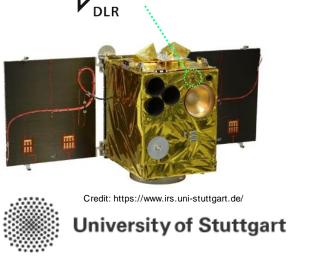

SVNODTA

## **IZN-1** Upgrades for Optical Communications


- The Flying Laptop has been used for validation. The satellite hosts the DLR OSIRISv1 terminal
- Coarse and fine pointing could be demonstrated
- Optical downlink signal in C-band successfully coupled in the into the multi-mode fibre in the station receive optical path








SVNODTA



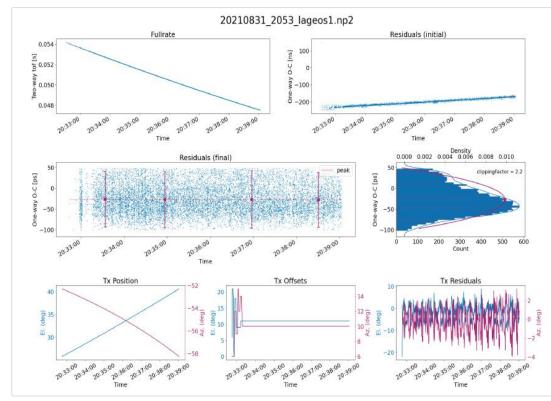


DiG



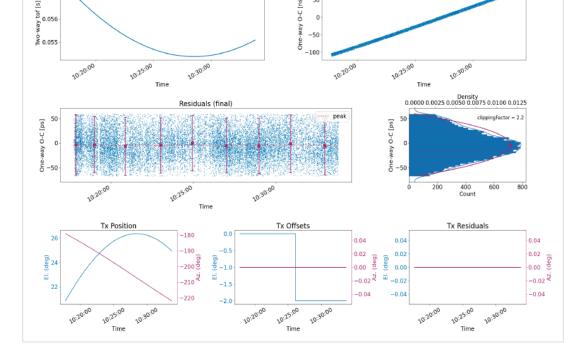
# naries DiG<sup>®</sup>S

### **Residual Analysis from SCOPE session summaries**


0.057

Early IZN-1 SLR tests

both wavelengths


Stable NPT distributions at

LAGEOS-1 532 nm



| Evaluati     | on    | Meteo         |       |  |
|--------------|-------|---------------|-------|--|
| Returns      | 13199 | Temp. (°C)    | 10    |  |
| RMS (1w, mm) | 10.09 | (0/)          | 48.2  |  |
| RMS (2w, ps) | 67.33 | Hum. (%)      |       |  |
| TB (ms)      | -1.07 |               | 770.0 |  |
| RB (m)       | -3.35 | Press. (mbar) | 770.6 |  |

LAGEOS-1 1064 nm 20211210\_1028\_lageos1.np2 Fullrate Residuals (initial)



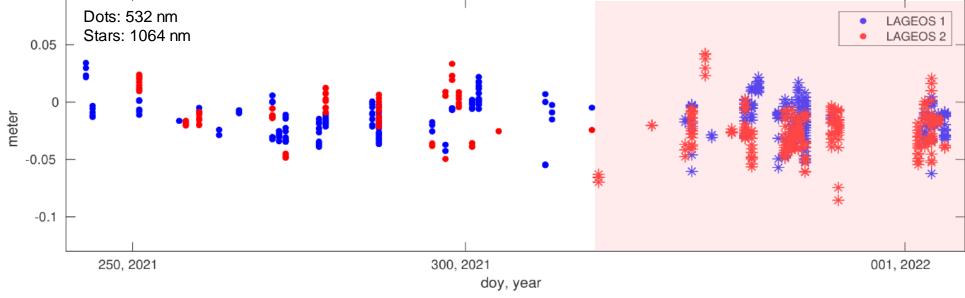
| Evaluat      | ion           | Meteo         |       |  |
|--------------|---------------|---------------|-------|--|
| Returns      | Returns 18951 |               | 6     |  |
| RMS (1w, mm) | 8.66          |               | 26.6  |  |
| RMS (2w, ps) | 57.74         | Hum. (%)      |       |  |
| TB (ms)      | 0.13          | Broos (mbor)  | 771 4 |  |
| RB (m)       | -0.51         | Press. (mbar) | //1.4 |  |

+

eesa

### **1. Validation by SST Expert Centre**

Assessment based on analysis of LAGEOS orbits by AIUB as backup for the weekly SLR routine at the ILRS Analysis Center at BKG (Germany)


#### Mean Accuracy of LAGEOS orbits and network solution used as validation reference

| Weekly mean RMS within 2021        | [m]   |
|------------------------------------|-------|
| LAGEOS orbit and network solutions | 0.009 |
| LAGEOS orbit residuals             | 0.008 |

| IZN-1 validation results |       |                    |                   |  |  |  |  |  |
|--------------------------|-------|--------------------|-------------------|--|--|--|--|--|
| Satellite                | # NPT | Mean residuals [m] | Residuals RMS [m] |  |  |  |  |  |
| LAGEOS 1                 | 381   | -0.016             | 0.023             |  |  |  |  |  |
| LAGEOS 2                 | 347   | -0.022             | 0.029             |  |  |  |  |  |

#### 12 1 12

**Residuals of LAGEOS 1-2 normal point data** 

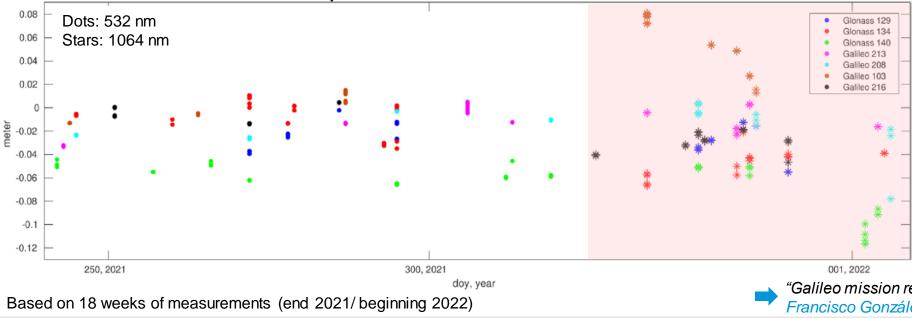


Based on 18 weeks of measurements (end 2021/beginning 2022)





ΔΠ/R


## **1. Validation by SST Expert Centre**

Assessment based on analysis of GNSS orbits in the frame of CODE activities as an analysis centre to the IGS MGEX project

| Accurac | y (median value) of IGS multi-G | NSS satellite orbits u | sed as validation refere | nce |
|---------|---------------------------------|------------------------|--------------------------|-----|
|         | Validation Method               | Glonass                | Galileo                  |     |
|         | SLR validation [m]*             | 0.011                  | -0.006                   |     |
|         | Orbits misclosures [m]          | 0.012                  | 0.011                    |     |
|         | RMS of 3-day orbit fit [m]      | 0.015                  | 0.010                    |     |

\*Independent SLR validation

#### Residuals of Glonass/Galileo normal point data



The SST Expert Centre analysis on LAGEOS and GNSS shows that IZN-1 accuracy is comparable with the residuals of the reference orbits

Mean residuals [m]

-0.021

-0.023

-0.055

-0.007

-0.015

0.005

-0.004

IZN-1 validation results

**# NPT** 

11

34

17

16

10

12

8

Satellite

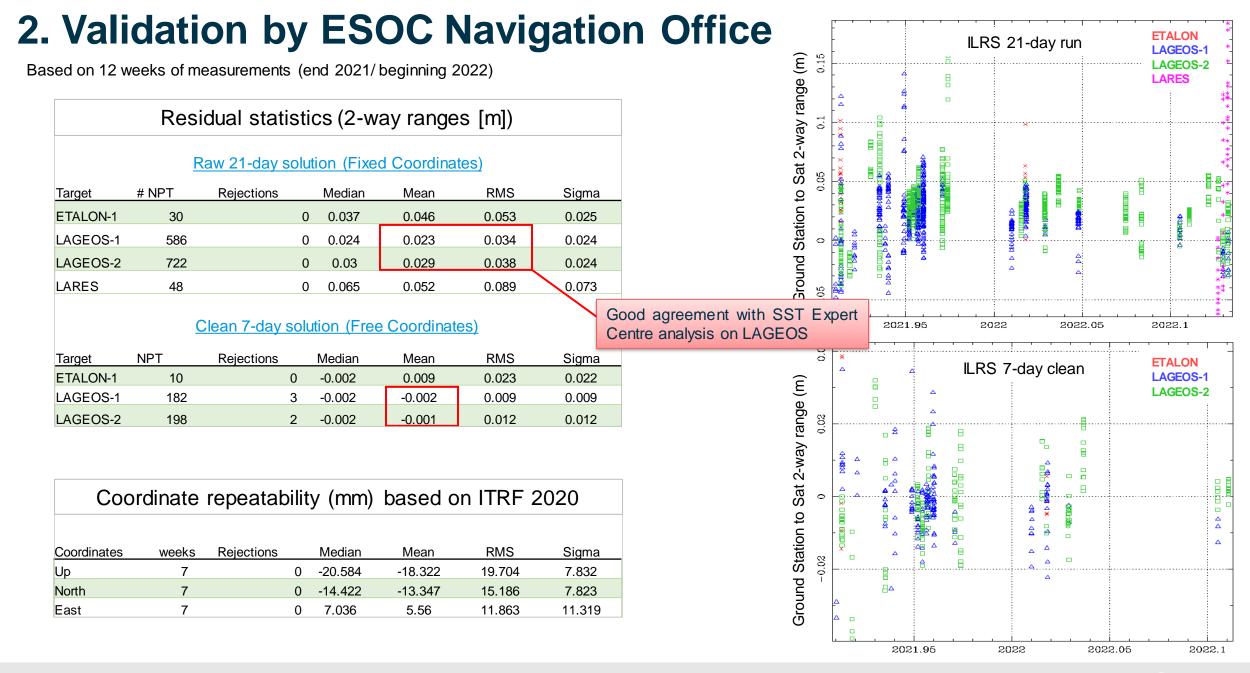
Glonass 129

Glonass 134

Glonass 140

Galileo 213

Galileo 208


Galileo 103

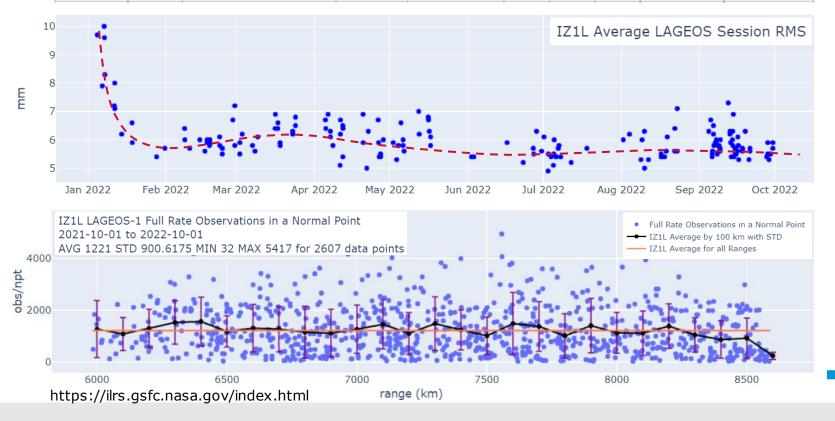
Galileo 216

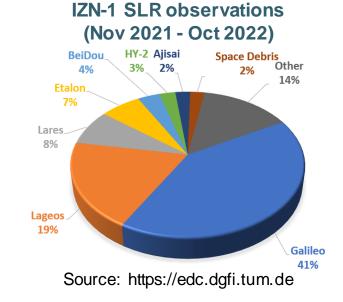
"Galileo mission recent results, ongoing support and future launches" Francisco González, ESA, Session 5, 12:30-12:45








┿╴▋▌ 🔄 〓 ▋▌ ▋▋ 〓 ╬╬ 〓 🖬 🚺 🛌 🚺 💥 👫 💶 🛨


### **IZN-1** Qualification for ILRS

| Monument | Code | Location Name,<br>Country       | CDDIS<br>SOD | IERS<br>DOMES<br>Numbers | IGS<br>Site<br>Log | IVS<br>Site<br>Log | IDS<br>Site<br>Log | Date of<br>Latest<br>Site Log | Date of<br>Latest<br>Site History<br>Log |
|----------|------|---------------------------------|--------------|--------------------------|--------------------|--------------------|--------------------|-------------------------------|------------------------------------------|
| 7501     | HARL | Hartebeesthoek, South<br>Africa | 75010602     | 30302M003                | Х                  | Х                  | Х                  | 20210927                      | 20220820                                 |
| 7503     | HRTL | Hartebeesthoek, South<br>Africa | 75036401     | 30301S010                | Х                  | Х                  | Х                  | 20190117                      | -                                        |
| 7701     | IZ1L | Izaña (Tenerife), Spain         | 77015701     | 31336S001                | -                  | -                  | -                  | 20220425                      | -                                        |
| 7810     | ZIML | Zimmerwald,<br>Switzerland      | 78106801     | 14001S007                | Х                  | -                  | -                  | 20181001                      | 20220407                                 |
| 7811     | BORL | Borowiec, Poland                | 78113802     | 12205S001                | Х                  | -                  | -                  | 20211012                      | 20211012                                 |
| 7819     | KUN2 | Kunming, China                  | 78198201     | 21609S004                | Х                  | Х                  | -                  | 20170119                      | 20220419                                 |

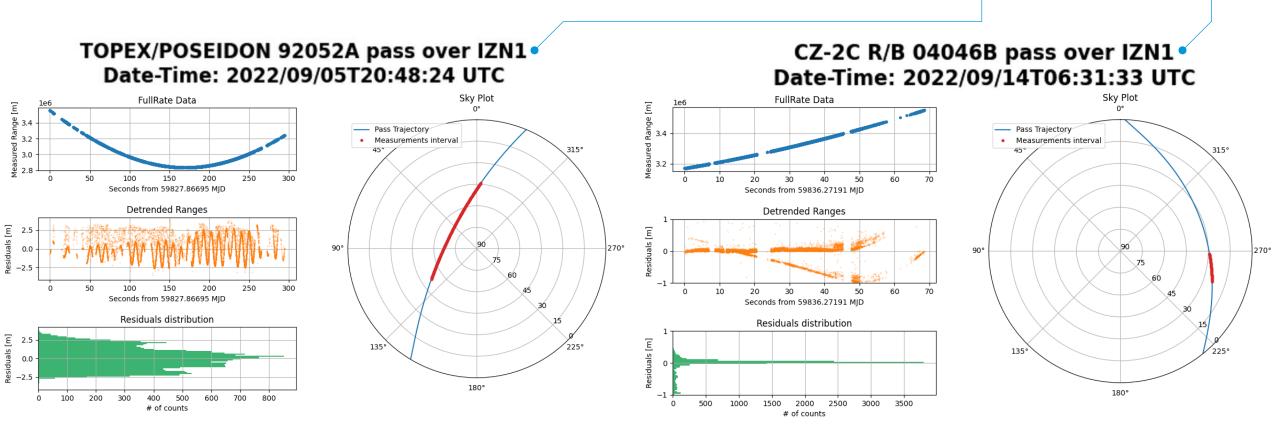


Station Released from ILRS quarantine on April 2022Remote operations mainly at 1064 nm





*"Current state of the contribution of ESA's Izana-1 station to the ILRS" Sven Bauer, DiGOS, Session 6, 09:30-09:45* 


## Laser ranging to Cooperative Space debris

- Successful laser tracking of defunct satellites and rocket bodies with retroreflectors
- Laser system with low energy per pulse (550µJ @1064nm)
- Range residuals show behaviour which might be exploited for attitude characterisation

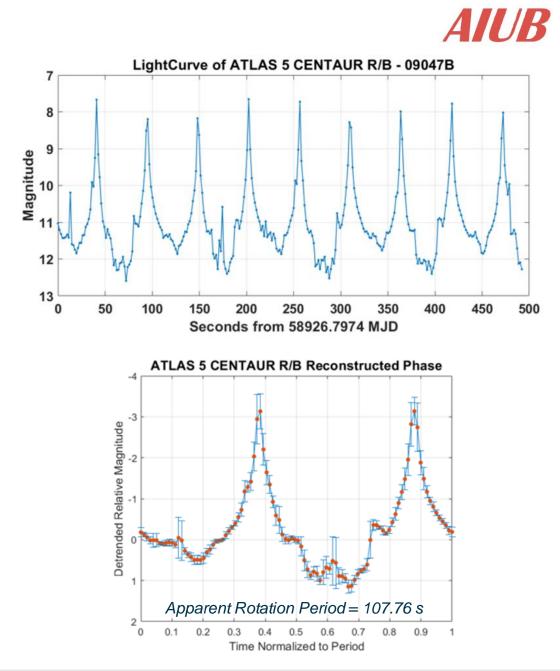




Credit: Wikipedia Credit: Gunter's Space Page






### **Space Debris Passive observations**

- Passive observations of objects from LEO to GEO with space debris camera
- Validation of space debris camera measurements performed by SST Expert Centre (AIUB)
- According to SST Expert Centre rules, a constant time bias < 70 ms and an astrometric accuracy < 3 arcsec, are required for SST applications</li>
- Attitude characterization through acquisition and analysis of light curves (up to 1.5 fps)



| Date       | # Of Meas. | Time<br>offset [ms] | Mean Astrometric<br>Accuracy [arcsec] |
|------------|------------|---------------------|---------------------------------------|
| 2020/03/18 | 61 (4*)    | -30.42              | 3.2                                   |
| 2021/07/30 | 39 (5*)    | 52.0                | 0.96                                  |

\* Number of observed satellites



### Summary

- New station in Tenerife operational since 2021 for multiple applications: SLR, optical communications, debris observations.
- IZN-1 is a development platform for prototyping and testing emerging technologies in SLR and LEO-DTE optical communications with emphasis on automation, daylight debris ranging and overall productivity
- IZN-1 joined ILRS as engineering station. Qualification process completed in April 2022.
- Parallel validation from different entities including <u>SST Expert Centre</u> and <u>ESOC Navigation Office</u>
  IZN-1 accuracy comparable with high-performance ILRS stations
- First active and passive observation of space debris performed. IZN-1 is being upgraded to support daytime space debris laser ranging within a network of space debris tracking stations

 "Laser ranging—Evolution towards active sensor
 networking for debris observation" Laura Aivar, GMV, Session 7, 10:15-10:30

#### ▬ ੜ !! !! = ▬ + !! !! := = !! !! = = !! = ... !! >... !! ※ !! !! := !! := !!

# Thank you!

\*



