

Lunar Pathfinder Laser Retroreflector Array

Stephen M. Merkowitz, Zachary Denny, Edward Aaron, Scott Wetzel, Javier Ventura-Traveset, Werner Enderle, and Pietro Giordano

22nd International Workshop on Laser Ranging

November 8, 2022

Lunar Pathfinder Overview

Lunar Pathfinder is a European Space Agency (ESA) communications relay satellite in lunar elliptical orbit to provide services to missions in Cislunar space

- Primary payload
 - Moon Link communication-relay payload providing data relay communications between Earth and Lunar assets
 - Two simultaneous channels of communication to lunar assets (S-band and UHF)
 - Communications relayed back to Earth ground station via X-band
- Tentative launch date : 2025
- ESA-NASA International cooperation:
 - Service provision (ESA),
 - Rideshare provision (NASA)
 - LRR accommodation and experimentation (NASA & ESA)

Hosted Experiment Payloads

Spacecraft Characteristics (Preliminary)

PLATFORM		
Operation Orbit	Apos elene Al titude (km): 7500 Peris elene Altitude (km): 500 Eccentricity: 0.61 Inclination (deg): 57.8 RAAN (deg): 61.5 Argument of Pericenter (deg): 90 Epoch: 1 Dec 2022 00:00:00	UHF Helix Antenna
Lifetime	8.5 years (0.5 y transfer; 8 y Comms service)	
Wet Mass	291.6 kg	3 x Se
Power	Solar Array cells Azure 3G30C, battery 2x SAFT 8S3P	
Earth Link (Xband)	Orbiter to Earth (RTN) LGA: 51 kbps Orbiter to Earth (RTN) HGA: 5000 kbps Earth to Orbiter (FWD) LGA: low 2 kbps Earth to Orbiter (FWD) LGA medium :31 kbps	2 x Deployable Solar Arrays
Moon Link (S band and UHF)	Orbiter to Moon (FWD) Sband/UHF: 124 kbps (Rover) Moon to Orbiter (RTN) Sband/UHF: 248 kbps (EIRP 13) Moon to Orbiter (RTN) Sband 1986: kbps (EIRP 21.5)	
Ranging	Based on two ground stations on different hemispheres, 6 hrs dedicated Earth ranging sessions (using X-Band TT&C link) every 15 days to obtain ≤ 20 km position accuracy	
Propulsion	RCS based on 8 1N thrusters blown down mode, 28.6 kg hydrazine (75% fill ratio)	
AOCS	Constrained Sun/Nadir pointing Normal mode, STIM Gyro- Sodern Auriga STR-Bison SS, SSW-200 Wheels and RCS	Offset Solar X-Band Horn
Redundancy	Core DHS, AOCS, Earth link Transponder, BCM, RCS, Moon Link Transponder	Array Antenna on API
Platform Avionics used	PIU/CHIMP, LEO a vionics (SSTL & external supplier) based on CoreDHS	
Rideshare Provider	NASA	
	MOON LINK PAYLOAD	
Moon Link Payload	Moon Link Data handling (HSRDX data recorder HW and SW) , Moon Link Comms (Proximity-1 transponders, RF front End, UHF and Sband antennas)	Launch timeframe 2025

S-Band moon Link

Parabolic Dish on APM

3 x Septum Polarisers $(\pm X \& +Z)$

2 x Dual Sun Sensors

Secondary Radiator Panel

NAV/LRR Experiment Objectives

- Demonstrating the feasibility of laser ranging to lunar orbiters (complementing LRO experience)
- First time ever testing simultaneously three ranging technologies in a lunar orbiting satellite (radio, GNSS, and Laser).
- First time ever to test/demonstrate new Precise Orbit Determination concepts and algorithms based on combined processing of GNSS and SLR data for a spacecraft in lunar orbit
- Assess the unique synergies between GNSS and LRR technologies in lunar orbit

- Demonstration of two-way laser ranging in support of precision orbit determination (POD) for lunar missions
 - Builds upon the successful use of one-way laser ranging to the LRO for improved POD
 - Future lunar orbiter missions will require enhanced POD beyond what was performed on LRO and GRAIL (Gravity Recovery and Interior Laboratory)
- Validation of GNSS-based (GPS and Galileo) positioning for lunar missions
 - Optical laser ranging as an independent and higher-precision measurement technique supports validation of traditional radio tracking and GNSS-based positioning
- Investigate use of lunar orbiter for improved tie between Terrestrial Reference Frame & Lunar Reference Frame
 - Could advance vital capabilities for geolocation of lunar science measurements & geodesy
- Investigate use of lunar orbiter for improved determination of Universal Time (Earth's rotation angle)

Lunar-Capable Laser Ranging Stations

 The four ILRS Lunar Laser Ranging stations can be used for the LPF/LRA experiment: Apache Point, Grasse, Matera, and Wettzell. ESA also plans to add the enhanced Tenerifebased station.

Notional Concept of Operations

3rd Experiment slot (e.g.: 4-5 days)

Normal Pathfinder operation (> 1 month)

Lunar Pathfinder Velocity Aberrations

Based on orbit analysis provided by SSTL

Lunar Pathfinder Laser Retroreflector Array

- ◆ 48 x 4.06 cm diameter uncoated unspoiled cubes
- Mass: 4.2 kg
- ♦ Volume: 262 X 383 X 53 mm³
- Heritage KBR design

Leveraging Lunar Reconnaissance Orbiter (LRO) Experience

- LRO equipped with both passive LRA & active one-way Earth-to-LRO laser link
- Laser ranging to LRO was successfully demonstrated by the Grasse station
 - However, the small optical cross-section of LRO's LRR made ranging difficult and only possible under ideal conditions (weather, Moon elevation, dark background, etc.)
 - Therefore, only the one-way laser link was able to provide meaningful measurements for science
- Lunar Pathfinder LRA is ~12x the cross section of the LRO array that significantly improves the feasibility of successful range measurements.

LRA Characterization at NASA Goddard Space Flight Center

Preliminary - pending final calibration

Optical Cross Section (OCS) Distribution

Preliminary - pending final calibration

Annulus = 0.5-21.2 μrad

Angle of Incidence (AOI) Dependence

Lunar Pathfinder Visibility

Preliminary - pending final calibration

Summary

- Lunar Pathfinder LRA Cross Section should enable ranging from all current LRR stations.
- Regular Earth pointing experiment windows provide many tracking opportunities.
- Lunar Pathfinder will demonstrate for the first time simultaneous three ranging technologies (radio, GNSS, and laser) on a lunar orbiting satellite.
- If successful, will open new possibilities for precision orbit determination and navigation on and around the Moon.

Photo Credit: SSTL