Homogeneous formation of SLR Normal Point data

Linda Geisser, Thomas Schildknecht, Ulrich Meyer, Daniel Arnold, Adrian Jäggi

Astronomical Institute, University of Bern, Switzerland

22nd INTERNATIONAL WORKSHOP ON LASER RANGING, 8 November 2022

Slide 1

- Introduction
 - Data flow of SLR Normal Points
 - How to build SLR Normal Points
 - SLR processing at AIUB
- First results
 - Compare different screening techniques
 - SLR solutions using Variance Component Estimation
- Summary & Outlook

DATA FLOW OF NORMAL POINTS

erc

UNIVERSITÄT RERN

Slide 3

DATA FLOW OF NORMAL POINTS

erc

UNIVERSITÄT

RERN

Slide 4

UNIVERSITÄT RERN

LASER RANGING, 7-11 Nov 2022

ILRS NORMAL POINT ALGORITHM

Outline:

NORMAL POINTS

Outline:

UNIVERSITÄT RERN

- Introduction
- Data flow of SLR NPs
- How to build NPs
- SLR processing at AIUB
- First results
- Summary & Outlook

Sources:

https://ilrs.gsfc.nasa.gov/dat a_and_products/data/npt/npt _algorithm.html

• For each bin *i*:

$$NP_i = O_i - FR_i + \overline{FR}_i$$

 O_i : Observation closest to the mean epoch of the bin i

 FR_i : Fit residual of this observation O_i

 \overline{FR}_i : Mean of fit residuals in the bin i

TWO SCREENING TECHNIQUES

Outline:

UNIVERSITÄT RERN

- Introduction
- Data flow of SLR NPs
- How to build NPs
- SLR processing at AIUB
- First results
- Summary & Outlook

[1]https://ilrs.gsfc.nasa.gov/d ata and products/data/npt/n pt algorithm.html

RMS based rejection level [1]

Leading edge method [Kirchner et al., 2008] [Wilkinson et al., 2018]

Astronomical Institute, University of Bern **AIUB**

data

SLR PROCESSING AT AIUB

Outline:

UNIVERSITÄT BERN

- Introduction
- Data flow of SLR NPs
- ➢ How to build NPs
- SLR processing at AIUB
- First results
- Summary & Outlook

Glossary: • S: along-track

• W: cross-track

Slide 9

Satellites Parametrization	LAGEOS-1/2		
Occulating alamonts	$a, e, i, \Omega, \omega, u_0$		
	1 set per 7 days		
Constant and	S_0, S_S, S_C, W_S, W_C		
once-per-revolution accelerations	1 set per 7 days		
Pseudo-stochastic pulses	no pulses		
Earth Rotation	$X_P, Y_P, UT1 - UTC$		
Parameters	piecewise-linear		
Geocenter coordinates	1 set per 7 days		
	free geocenter		
Chaties accordinates	1 set per 7 days		
Station coordinates	NNR and NNT		
Rango biacos	1 set per 7 days for		
Range blases	selected stations + ZIML		

22nd INTERNATIONAL WORKSHOP ON LASER RANGING, 7-11 Nov 2022 Linda Geisser: Homogeneous formation of SLR Normal Point data

Parametrization

D UNIVERSITÄT BERN

COMPARE DIFFERENT SCREENING TECHNIQUES

Outline:

- Introduction
- First results
- Compare different screening techniques
- SLR solutions using VCE
- Summary & Outlook

- Weekly SLR solutions based on LAGEOS-1/2 for July to October in 2019
- Different screening methods are applied
 - S1-RMS3250: **RMS** based rejection level with +/- 2,5 σ
 - S2-LEHM-50+90:
 Leading edge method with [-50ps,+90ps]

(currently only on data from ZIML)

UNIVERSITÄT RERN

____ COMPARE DIFFERENT SCREENING TECHNIQUES

Outline:

- Introduction
- First results
- Compare different screening techniques
- SLR solutions using VCE
- Summary & Outlook

	Χ pole [μas]		Υ pole [μas]		UT1-UTC [μs]	
	Bias	WRMS	Bias	WRMS	Bias	WRMS
RMS3250	99,6	179,7	53,8	145,3	7,6	71,6
LEHM-50+90	93,9	170,9	53,4	140,9	5,7	71,7

erc

Station coordinates

UNIVERSITÄT BERN

COMPARE DIFFERENT SCREENING TECHNIQUES

erc

SLR SOLUTIONS USING VCE

Outline:

UNIVERSITÄT RERN

- Introduction
- First results
- Compare different screening techniques
- SLR solutions using VCE
- Summary & Outlook

Sources: [1] https://ilrs.gsfc.nasa.gov VCE in a nutshell Normal equation systems per satellite group: $N_i x_i = b_i$

Combined normal equation system: $N_c x_c = b_c$

with

•

$$\boldsymbol{N}_{c} = \sum_{i=1}^{n} \frac{\sigma_{0}^{2}}{\hat{\sigma}_{i}^{2}} \boldsymbol{N}_{i}, \boldsymbol{b}_{c} = \sum_{i=1}^{n} \frac{\sigma_{0}^{2}}{\hat{\sigma}_{i}^{2}} \boldsymbol{b}_{i}$$

where $\hat{\sigma}_i$ is the a posteriori variance factor for satellite group i:

 $\hat{\sigma}_{i}^{2} = \frac{\boldsymbol{x}_{c}^{T} \boldsymbol{N}_{i} \boldsymbol{x}_{c} - 2 \boldsymbol{x}_{c}^{T} \boldsymbol{b}_{i} + \boldsymbol{l}_{i}^{T} \boldsymbol{P}_{i} \boldsymbol{l}_{i}}{n_{i} - \frac{\sigma_{0}^{2}}{\sigma_{i}^{2}} tr(\boldsymbol{N}_{i} \boldsymbol{N}_{c}^{-1})}$ $\rightarrow \text{ Weights: } \hat{w}_{i} \coloneqq \frac{\sigma_{0}^{2}}{\hat{\sigma}_{i}^{2}}$

erc

Using the Variance Component Estimation per satellite and per station:

Station	LAGEOS-1	LAGEOS-2
1884	$\widehat{w}_{1884,L1}$	$\widehat{w}_{1884,L2}$
7090	$\widehat{W}_{7090,L1}$	$\widehat{W}_{7090,L2}$
7810	$\widehat{W}_{7810,L1}$	$\widehat{W}_{7810,L2}$

- Compare
 - Earth Rotation Parameters
 - Weights from VCE

SLR SOLUTIONS USING VCE

Outline:

UNIVERSITÄT RERN

- Introduction
- First results
- Compare different screening techniques
- SLR solutions using VCE
- Summary & Outlook

erc

models.

SUMMARY & OUTLOOK

SUMMARY

- Different screening techniques can be applied.
- SLR processing can be used to validate the quality of the newly generated NPs.
 - VCE per satellite and per station indicates that the LEHM-50+90 solution is better.

OUTLOOK

- Develop new screening techniques.
- Apply the screening techniques also on full-rate data from other stations.

Astronomical Institute, University of Bern AIUB

UNIVERSITÄT RERN

Outline:

Introduction

• First results

• Summary &

Outlook

REFERENCES

- 1. https://ilrs.gsfc.nasa.gov/data_and_products/data/npt/npt_algorithm.html
- Kirchner G., Kucharski D., Koidl F. (2008) Millimeter Ranging to Centimeter Targets. In: Proceedings of the 16th International Workshop on Laser Ranging, October 12-17, 2008, Poznan, Poland
- Wilkinson M., Rodríguez J., Otsubo T., Appleby G. (2018) Implementing Consistent Clipping in the Reduction of SLR Data from SGF, Herstmonceux. In: Proceedings of the 21st International Workshop on Laser Ranging
- 4. https://hpiers.obspm.fr/eop-pc/index.php?index=C04&lang=en

Astronomical Institute, University of Bern AIUB

UNIVERSITÄT RERN