Relativistic Positioning as a complementary technique of LASER Ranging

Angelo Tartaglia - INAF-OATo
Lorenzo Casalino - Politecnico di Torino DIMEAS
Matteo Luca Ruggiero - Università di Torino DIMAT

Relativistic positioning and geometry

Null geodesics are a faithfull texture for a curved space time and may be used to localized an event, once a reference frame has been chosen.

Self-positioning for navigation

A. Tartaglia, ML. Ruggiero, E. Capolongo, A null frame for spacetime positioning by means of pulsating sources, Advances in Space Research, 47, 645-653 (2011)

Bottom up (Minkowski)

Time

Matteo Luca Ruggiero, Angelo Tartaglia, Lorenzo Casalino, Geometric definition of emission coordinates, Advances in Space Research, 69(12), 4221-4227

Future light cone of the emitter

Time
E: orbiting emitter
R_{i} : ground based receiver

x_{i}^{\prime} 's: known coordinates
τ_{i} 's: measured proper times (synchronous clocks)
τ_{E}, X_{E} 's: to be determined
: light rays

Space 1

Matteo Luca Ruggiero, Angelo Tartaglia, Lorenzo Casalino, Geometric definition of emission coordinates, Advances in Space Research, 69(12), 4221-4227

Basic equations

Null geodesic between the emitter and the $i_{t h}$ receiver (Cartesian coordinates, Earth centered non rotating frame):

$$
c^{2}\left(t_{i}-t_{E}\right)^{2}=\left(x_{i}-x_{E}\right)^{2}+\left(y_{i}-y_{E}\right)^{2}+\left(z_{i}-z_{E}\right)^{2} \quad i: 1 \div 5
$$

$x_{i}^{\prime} s, y_{i}^{\prime} s, z_{i}^{\prime}$'s are given t_{i} 's are measured $t_{\mathrm{E}}, x_{\mathrm{E}}, y_{\mathrm{E}}, \mathrm{z}_{\mathrm{E}}$ are to be calculated

Subtracting the first from the other equations ends up with 4 linear eq.s for the four unknowns:

$$
2 c^{2} t_{E}\left(t_{j}-t_{1}\right)-2 x_{E}\left(x_{j}-x_{1}\right)-2 y_{E}\left(y_{j}-y_{1}\right)-2 z_{E}\left(z_{j}-z_{1}\right)=c^{2}\left(t_{1}^{2}-t_{j}^{2}\right)+r_{j}^{2}-r_{1}^{2}
$$

Analytical solution

$$
\xi:\left(\begin{array}{l}
t_{E} \\
x_{E} \\
y_{E} \\
z_{E}
\end{array}\right) \quad C: 2\left(\begin{array}{cccc}
c^{2}\left(t_{2}-t_{1}\right) & x_{1}-x_{2} & y_{1}-y_{2} & z_{1}-z_{2} \\
c^{2}\left(t_{3}-t_{1}\right) & x_{1}-x_{3} & y_{1}-y_{3} & z_{1}-z_{3} \\
c^{2}\left(t_{4}-t_{1}\right) & x_{1}-x_{4} & y_{1}-y_{4} & z_{1}-z_{4} \\
c^{2}\left(t_{5}-t_{1}\right) & x_{1}-x_{5} & y_{1}-y_{5} & z_{1}-z_{5}
\end{array}\right) \quad N:\left(\begin{array}{l}
c^{2}\left(t_{1}^{2}-t_{2}^{2}\right)+r_{2}^{2}-r_{1}^{2} \\
c^{2}\left(t_{1}^{2} t_{2}^{2}\right)+t_{3}^{2}-r_{1}^{2} \\
c^{2}\left(t_{1}^{2}-t_{4}^{2}\right)+r_{4}^{2}-r_{1}^{2} \\
c^{2}\left(t_{1}^{2}-t_{5}^{2}\right)+r_{5}^{2}-r_{1}^{2}
\end{array}\right)
$$

$$
C \cdot \xi=N \quad \Longleftrightarrow \quad \xi=C^{-1} \cdot N
$$

Include Earth's
rotation $\quad\left\{\begin{array}{l}x_{1}-x_{j}=r_{1} \sin \vartheta_{1} \cos \left(\Omega t_{1}\right)-r_{j} \sin \vartheta_{j} \cos \left(\Omega t_{j}\right) \\ y_{1}-y_{j}=r_{1} \sin \vartheta_{1} \sin \left(\Omega t_{1}\right)-r_{j} \sin \vartheta_{j} \sin \left(\Omega t_{j}\right) \\ z_{1}-z_{j}=r_{1} \cos \vartheta_{1}-r_{j} \cos \vartheta_{j}\end{array} \quad r_{j}{ }^{2}=x_{j}{ }^{2}+y_{j}{ }^{2}+z_{j}{ }^{2}\right.$

Gravitational effects

Schwarzschild approximated symmetry

Radial null trajectory

$$
\begin{aligned}
& c\left(t_{1}-t_{E}\right)=r_{E}-r_{1}+2 m \ln \frac{r_{E}-2 m}{r_{1}-2 m} \\
& \frac{\Delta\left(t_{i}-t_{E}\right)}{t_{i}-t_{E}}=2 \frac{m}{r_{E}-r_{i}} \ln \frac{r_{E}-2 m}{r_{1}-2 m} \cong 2 \frac{m}{r_{E}-r_{i}} \ln \frac{r_{E}}{r_{i}}+O\left(\frac{m^{2}}{r^{2}}\right) \approx 6 \times 10^{-10}
\end{aligned}
$$

Rotation of receivers and proper times

$$
t_{i}=\frac{\tau_{i}}{\sqrt{1-2 \frac{m}{r_{i}}-\frac{\Omega^{2} r^{2}}{c^{2}} \sin ^{2} \theta}} \approx\left[1+\frac{m}{r_{i}}+\frac{\Omega^{2} r_{i}^{2}}{2 c^{2}} \sin ^{2} \theta_{i}+\left(\frac{m^{2}}{r_{\text {ceath }}^{2}}, \frac{\Omega^{3} r^{3} \text { carth }}{c^{3}}\right)\right] \tau_{i}
$$

Uncertainties and errors

Position of the receivers on the ground
 Systematic errors: $\Delta x_{i}, \ldots$

Measurement uncertainty: $\delta \tau_{\text {i }}$

Then, of course, one has the propagation through the atmosphere
Numerical implementation is under way

Thank you

