

Australian Government

Geoscience Australia

22ND INTERNATIONAL WORKSHOP **ON LASER RANGING**

> 7-11 November 2022 Yebes, Spain

RECONNECTING THE ILRS COMMUNITY

SLR validation of IGS GNSS orbits derived in the framework of the ITRF2020 realization

Krzysztof Sośnica¹, Radosław Zajdel¹, Grzegorz Bury¹, Salim Masoumi²

¹Institute of Geodesy and Geoinformatics, UPWr, Wrocław, Poland ²Geoscience Australia, Canberra, Australia

ITRF2020 – IGS contribution

	COD	ESA	GFZ	GRG	JPL	MIT	NGS	TUG	ULR	WHU
GNSS (included from)	GPS (1994/01/02) GLO (2002/01/01) GAL (2013/01/01)	GPS (1995/01/01) GLO (2009/01/01) GAL (2015/01/01)	GPS (1994/01/02) GLO (2012/01/01) GAL (2013/12/21)	GPS (2000/05/03) GLO (2008/11/04) GAL (2016/12/31)	GPS (1994/01/02)	GPS (2000-01- 02) GAL (2017-01- 01)	GPS (1994/01/02)	GPS (1994/01/01) GLO (2009/01/01) GAL (2013/01/01)	GPS (2003/01/01)	GPS (2008-01-01) GLO (2010-09-28)
Observable types	double differenced iono-free combinations GPS & GLONASS: L1 & L2 GALILEO: E1 & E5a	undifferenced iono- free linear combinations GPS & GLONASS: L1 & L2 GALILEO: E1 & E5a	undifferenced iono- free linear combinations	undifferenced ionosphere-free linear combination on carrier phase (and code). GPS and GLONASS : L1/L2 ; GALILEO : E1/E5a	undifferenced ionosphere-free linear combination. GPS: L1/L2	GPS L1&L2 GALILEO E1&E5a (dual frequency combination)	?	raw (undifferenced and uncombined) code and phase observations GPS: L1, L2, L5 GLONASS: L1, L2 Galileo: L1, L5, L7, L8	doubly differenced phase (GPS: L1&L2) and code observations	undifferenced iono- free linear combinations GPS and GLONASS : L1/L2
A priori solar radiation pressure	GPS & GLO: None GALILEO: Box-wing based on GSA(2019)	Box-wing models for all satellites used for: Solar Radiation Earth Reradiation Earth IR radiation	None	Box-wing models	GSPM13b (Sakumura et al 2017); GPS Block III: Manufacturer Table	Direct only	?	Box-wing models	Direct only	None
Empirical accelerations (constraints)	D,Y,B constants + B 1/rev + D 2/rev; no constraints for GALILEO if beta<12: + D 1/rev + Y constant (FOC only)	D, Y, B constants + B 1/rev + Along 1/rev. Along 1/rev constraint	D,Y,B constants + B 1/rev + D 2&4/rev; no constraints	ECOM2 model, without adjusting the bias in the sun direction	Solar Scale and Y Bias	ECOM2 with stochastic constraints and selected terms	?	7 ECOM2 parameters (D0, D2, Y0, B0, B1), no constraints	ECOM2 with stochastic constraints and selected terms	7 ECOM2 parameters (D0, D2, Y0, B0, B1), no constraints
Stochastic pulses (constraints)	pseudo-stochastic at midnight	None	at 12:00	For each eclipsing satellite	None	None	?	at center of day (12:00),	None	

- 10 IGS Analysis Centers provided GNSS solutions employing different orbit modeling and observables
- For the first time, in ITRF three GNSS systems are included: GPS, GLONASS, Galileo

ITRF2020 – IGS contribution

	COD	ESA	GFZ	GRG
GNSS (included from)	GPS (1994/01/02) GLO (2002/01/01) GAL (2013/01/01)	GPS (1995/01/01) GLO (2009/01/01) GAL (2015/01/01)	GPS (1994/01/02) GLO (2012/01/01) GAL (2013/12/21)	GPS (2000/05/03) GLO (2008/11/04) GAL (2016/12/31)
Observable types	double differenced iono-free combinations GPS & GLONASS: L1 & L2 GALILEO: E1 & E5a	undifferenced iono- free linear combinations GPS & GLONASS: L1 & L2 GALILEO: E1 & E5a	undifferenced iono- free linear combinations	undifferenced ionosphere-free linear combination on carrier phase (and code). GPS and GLONASS : L1/L2 ; GALILEO : E1/E5a
A priori solar radiation pressure	GPS & GLO: None GALILEO: Box-wing based on GSA(2019)	Box-wing models for all satellites used for: Solar Radiation Earth Reradiation Earth IR radiation	None	Box-wing models
Empirical accelerations (constraints)	D,Y,B constants + B 1/rev + D 2/rev; no constraints for GALILEO if beta<12: + D 1/rev + Y constant (FOC only)	D, Y, B constants + B 1/rev + Along 1/rev. Along 1/rev constraint	D,Y,B constants + B 1/rev + D 2&4/rev; no constraints	ECOM2 model, without adjusting the bias in the sun direction
Stochastic pulses (constraints)	pseudo-stochastic at midnight	None	at 12:00	For each eclipsing satellite

MIT	TUG
S (2000-01- 02) L (2017-01- 01)	GPS (1994/01/01) GLO (2009/01/01) GAL (2013/01/01)
PS L1&L2 ILEO E1&E5a al frequency mbination)	raw (undifferenced and uncombined) cod and phase observations GPS: L1, L2, L5 GLONASS: L1, L2 Galileo: L1, L5, L7, L8
Direct only	Box-wing models
COM2 with tochastic straints and ected terms	7 ECOM2 parameters (D0, D2, Y0, B0, B1), n constraints
None	at center of day (12:00),

- 10 IGS Analysis Centers provided GNSS solutions employing different orbit modeling and observables
- For the first time, in ITRF three GNSS systems are included: GPS, GLONASS, Galileo

SLR validation of GNSS orbits

- Validation of the <u>combined</u> IGS Repro3 orbits delivered by Geoscience Australia using Satellite Laser Ranging (SLR) data:
 - Traditional global AC weighting algorithm (**GW**)
 - Satellite-specific AC weighting algorithm (**SSW**)
- Dataset 2013-2020 (main interest in Galileo)
- SLR validation of different satellite types: Galileo FOC, FOC eccentric orbit, IOV, GLONASS-M, -K

Combination strategy:

Sośnica K., Zajdel R., Bury G., Bosy J., Moore M., Masoumi S. (2020) *Quality assessment of experimental IGS multi-GNSS combined orbits* GPS Solutions, Vol. 24 No. 54, URL: https://link.springer.com/article/10.1007/s10291-020-0965-5

No. of observations

- SLR validation of the GNSS orbits is sensitive to the radial orbit direction (96%), however, it may also deliver some information about the along-track (2.1%) and cross track component (1.9%)
- For Galileo FOC in eccentric orbits (SVN 201, 202), the radial component is smaller than for other GNSS satellites (~90%)

SLR validation of GNSS orbits

Results for different satellite types

[mm]	MEAN		STD		RMS	
type	GW	SSW	GW	SSW	GW	SSW
GAL-FOC	5.2	3.0	24.1	24.0	24.7	24.9
GAL-FOCe	7.7	6.9	25.2	24.2	26.3	27.3
GAL-IOV	-14.1	-14.4	31.1	28.0	34.2	27.7
GLO-K1A	-2.9	-3.0	37.7	37.6	37.8	37.4
GLO-K1B	3.8	3.1	23.8	22.9	24.1	24.6
GLO-M	-5.5	-5.8	29.2	28.3	29.7	27.3
GLO-M+	28.7	27.6	25.8	24.0	38.6	43.1
GPS	-11.2	-11.7	23.2	20.3	25.8	19.5

Improvement of SSW compared to GW

	MEAN [%]	STD [%]	RMS [%]
GAL-FOC	-39.2	0.0	-1.4
GAL-FOCe	-8.9	-1.8	-2.4
GAL-IOV	3.8	-7.2	-5.3
GLO-K1A	2.3	0.0	0.0
GLO-K1B	-0.2	0.1	0.1
GLO-M	0.3	0.6	0.6
GLO-M+	-1.0	0.1	-0.6
GPS	2.9	0.2	0.8

SLR validation of GNSS orbits

- Validation of the combined orbits + individual ACs
- Searching for patterns in SLR residuals in different satellite-Sun-Earth geometry
 - SLR residuals as a function of β and argument of latitude of the satellite with respect to the argument of the latitude of the Sun (Δu),
 - SLR residuals as a function of elongation angle (ε)
- Possibilities to study SLR-related issues Satellite signature effect

satellite-Sun-Earth geometry

Orbit modeling issues - searching for patterns in SLR residuals (combined orbits)

SLR residuals as a function of <u>absolute β </u> and argument of latitude of the satellite with respect to the argument of latitude of the Sun (Δ u)

- Characteristic patterns for Galileo FOC (eclipsing seasons) and IOV satellites (eclipsing seasons and high β angles)
- Good quality for GLONASS-M and K1B

Orbit modeling issues - searching for patterns in SLR residuals

SLR residuals as a function of elongation angle (ϵ). Dots are colored with the absolute height of the Sun above the orbital plane (β)

Linear dependency between the elongation angle
(ε) and SLR residuals for Galileo FOC satellites with
a slope of 0.25 (FOC), 0.14 (FOCe), -0.15 (K1B), and
0.21 mm/deg (M+).

Orbit modeling issues - searching for patterns in SLR residuals (individual ACs)

60 120 180 240 300 360

0

0

60 120 180 240 300 360

0

60 120 180 240 300 360

• Most robust solutions are provided by TUG and ESA

Orbit modeling issues - searching for patterns in SLR residuals (individual ACs)

		GAL-	GAL-	GAL-	GLO-	GLO-	GLO-
-		FOC	FOCe	IOV	К	М	M+
COD		-6.4	-2.9	-12.4	-7.6	-6.8	28.0
ESA		-10.7	-8.9	-8.3	4.3	-6.6	28.4
GFZ	et I	-19.4	-12.2	-19.1	14.4	-8.2	24.5
GRG	offs	22.8	17.0	5.0	1.1	-1.3	35.8
MIT	R	2.7	9.1	-9.1	-	-	-
TUG	n Sl	17.4	14.6	-16.5	2.0	-10.6	24.0
GW	lea	3.0	4.6	-10.0	1.7	-6.2	28.5
SSW		0.8	4.1	-11.6	1.7	-6.4	28.1
COD		28.8	28.5	29.1	26.6	34.4	28.1
ESA	Ē	24.4	25.6	23.1	25.2	31.7	25.9
GFZ	<u> </u>	33.2	28.7	30.9	28.8	38.9	32.8
GRG	de	28.9	29.6	35.8	27.1	35.3	30.8
MIT	פ	27.1	26.7	27.8	-	-	-
TUG]da	24.2	25.5	26.0	24.6	34.7	29.3
GW	Stal	25.3	25.3	25.5	26.9	32.9	26.9
SSW		25.4	25.3	25.0	26.9	32.8	26.9

- Some ACs provide better solutions than the combination in terms of the standard deviation of SLR residuals.
- SLR is a very valuable tool to discover systematic effects in orbits as well as GNSS modeling issues.

Possibilities to study SLR-related issues - satellite signature effect

SLR residuals as a function of nadir angle for multi-photon MCP and single-photon CSPAD

When taking SLR observations from the stations equipped with MCP detectors a linear dependency between the SLR residuals and nadir angle ("satellite signature effect") is visible (Mostly for Galileo IOV – large LRA)

Туре	Detector	Mean [mm]	Number of normal points
GAL-FOC	CSPAD	14.8	67835
	CSPAD*	-16.7	42940
	МСР	2.1	43968
	PMT	10.7	6729
GAL-FOCe	CSPAD	16.9	10621
	CSPAD*	-10.9	6034
	МСР	5.3	10198
	PMT	15.5	1604
GAL-IOV	CSPAD	-5.5	39480
	CSPAD*	-25.9	14629
	МСР	-18.2	42815
	ΡΜΤ	-5.9	5423

There are some substantial differences (2 cm) in the mean offset of SLR residuals when considering SLR observations from different stations.

Long time-series of the uniform in quality GNSS orbits allow for the study of detector-specific issues in Satellite Laser Ranging to the GNSS satellites.

type	det	count	mean [mm]	std [mm]
GAL-FOC	CSPAD	69018	15	14
	CSPAD*	43337	-17	25
	MCP	44573	2	16
	PMT	6761	11	28
GAL-FOCe	CSPAD	10803	17	15
	CSPAD*	6141	-11	24
	MCP	10329	5	16
	PMT	1618	15	29
GAL-IOV	CSPAD	40028	-5	20
	CSPAD*	14788	-26	28
	MCP	43239	-18	22
	PMT	5472	-6	30
GLO-K1B	CSPAD	10441	14	16
	CSPAD*	4579	-9	25
	MCP	18469	-4	15
	PMT	6040	14	31
GLO-M	CSPAD	183065	1	20
	CSPAD*	94354	-14	33
	MCP	138225	-14	18
	PMT	84022	1	33
GLO-M+	CSPAD	24036	37	15
	CSPAD*	10560	6	27
	MCP	28229	25	15
	PMT	11998	31	33
GPS	CSPAD	1037	-4	12
	CSPAD*	619	-18	21
	MCP	816	-18	14
	PMT	24	11	22

type	det	count	mean [mm]	std [mm]
GAL-FOC	CSPAD	69018	15	14
	CSPAD*	43337	-17	25
	MCP	44573	2	16
	PMT	6761	11	28
GAL-FOCe	CSPAD	10803	17	15
	CSPAD*	6141	-11	24
	MCP	10329	5	16
	PMT	1618	15	29
GAL-IOV	CSPAD	40028	-5	20
	CSPAD*	14788	-26	28
	MCP	43239	-18	22
	PMT	5472	-6	30
GLO-K1B	CSPAD	10441	14	16
	CSPAD*	4579	-9	25
	MCP	18469	-4	15
	PMT	6040	14	31
GLO-M	CSPAD	183065	1	20
	CSPAD*	94354	-14	33
	MCP	138225	-14	18
	PMT	84022	1	33
GLO-M+	CSPAD	24036	37	15
	CSPAD*	10560	6	27
	MCP	28229	25	15
	PMT	11998	31	33
GPS	CSPAD	1037	-4	12
	CSPAD*	619	-18	21
	MCP	816	-18	14
	PMT	24	11	22

Possibilities to study SLR-related issues

[mm]	MEAN		STD		RMS	
type	BIAS	NDB	BIAS	NDB	BIAS	NDB
GAL-FOC	3.0	14.4	24.0	20.3	24.2	24.9
GAL-FOCe	6.9	16.4	24.2	21.8	25.1	27.3
GAL-IOV	-14.4	-6.1	28.0	27.0	31.5	27.7
GLO-K1A	-3.0	11.3	37.6	35.7	37.7	37.4
GLO-K1B	3.1	13.0	22.9	20.9	23.1	24.6
GLO-M	-5.8	0.9	28.3	27.3	28.9	27.3
GLO-M+	27.6	37.0	24.0	22.1	36.6	43.1
GPS	-11.7	-3.8	20.3	19.1	23.5	19.5

• Improvement of NDB compared to BIAS

	MEAN [%]	STD [%]	RMS [%]
GAL-FOC	374.4	-15.2	3.2
GAL-FOCe	137.6	-9.9	8.4
GAL-IOV	-57.5	-3.7	-12.2
GLO-K1A	-473.0	-5.1	-0.9
GLO-K1B	318.4	-8.7	6.5
GLO-M	-115.0	-3.4	-5.4
GLO-M+	34.0	-7.9	17.8
GPS	-67.5	-5.9	-16.9

50

ŝ

NAD [deg]

9

202:

0.27 inc

SLR residuals as a function of nadir angle for MCP and singlephoton CSPAD

When taking SLR observations from the stations equipped with MCP detectors we see a linear dependency between the SLR residuals and nadir angle ("satellite signature effect") **Mostly visible for** Galileo IOV

TTY OF ENVIRONMENTAL AND LIFE SCIENCES

Conclusions

- For the first time, three GNSS systems contribute to the ITRF realization. SLR is an independent tool to validate the quality of GNSS orbits: Galileo and GLONASS.
- The standard deviation of SLR residuals is at the level of 25 mm, but after removing detectorspecific errors, it can be reduced to 12-16 mm.
- Analysis of SLR residuals in Sun-Earth-satellite frame indicates some issues in the orbit modeling for the individual types of the GNSS satellites. Some of these issues have been already mitigated by IGS ACs (ESA, TUG); thus, there is still space for improvement in the combination strategy.
- Large differences between single-photon and multi-photon detectors have been found.
- There are only minor differences between the two delivered sets of combined solutions, which differ in terms of weighting strategy. Satellite-specific weighting is the official IGS product.

Future step 1: GPS and BeiDou satellites should be equipped with SLR retroreflectors and tracked by the SLR stations to provide information on orbit modeling issues.

Future step 2: Co-location in space onboard GNSS using space ties for future ITRF realizations.

Future step 3: Combined SLR+GNSS orbits.

GNSS+SLR combinations – removing systematic patterns

Bury G., Sośnica K., Zajdel R., Strugarek D., Hugentobler U. (2021) *Determination of precise Galileo orbits using combined GNSS and SLR observations.* GPS Solutions, Vol. 25 No. 11, URL: <u>https://link.springer.com/article/10.1007/s10291-020-01045-3</u>

Australian Government

Geoscience Australia

7-11 November 2022 Yebes, Spain

RECONNECTING THE ILRS COMMUNITY

Thank you for your attention

Krzysztof Sośnica¹, Radosław Zajdel¹, Grzegorz Bury¹, Salim Masoumi²

¹Institute of Geodesy and Geoinformatics, UPWr, Wrocław, Poland ²Geoscience Australia, Canberra, Australia

krzysztof.sosnica@upwr.edu.pl

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

BIASED

NO DETECTOR BIAS

