

The International VLBI Service for Geodesy and Astrometry – Status and Prospects –

> 22nd International Workshop on Laser Ranging 7–11 November 2022, Guadalajara, Spain

> > Rüdiger Haas

Geodetic Very Long Baseline Interferometry (VLBI)

observable: $\tau = delay$

 $c \cdot \tau = -\vec{b} \cdot \vec{k}$

 \vec{k} = unit vector to radio source \vec{b} = baseline vector between two stations

VLBI is unique:

- connects reference frames on the Earth with the background universe
- allows to determine all parameters that describe the orientation and rotation of the Earth
- relates via speed of light directly to SI-unit metre

Earth orientation and rotation

CHALMERS

• VLBI is sensitive to all

earth orientation parameters (EOP)

- Celestial pole offsets
- UT1-UTC, and LOD
- Polar motion, and polar motion rates
- Senses geodynamical phenomena, e.g. El Niño / Southern Oscillation

IVS – The International VLBI Service for Geodesy and Astrometry

- Founded in 1999 as an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components.
- Service for

- IAG (International Association of Geodesy)
- IAU (International Astronomical Union)
- WDS (World Data System of the International Science Council)
- Objectives
 - support geodetic, geophysical, and astrometric research and operational activities
 - promote research and development activities in all aspects of the geodetic and astrometric VLBI technique
 - interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system

IVS service aspects

- IVS serves both outside users and the geodetic/astrometric community itself
- IVS serves both the contributors and the users of VLBI data
- IVS provides data and products for the scientific community
- The main IVS products are
 - a terrestrial reference frame (TRF)
 - the international celestial reference frame (ICRF)
 - Earth orientation parameters (EOP)

IVS organisational aspects

- A non-profit and best effort organisation
- 80+ permanent components
 - network stations correlators data centres analysis centres technology development centres – operation centres – coordinating centre
- 40+ institutions

- Land survey agencies space agencies universities research institutions
- 20+ countries
- In total ca. 350 associated members

Today's IVS observing plan: S/X legacy

- S/X legacy observations, going back to 1979
- Today: ca. 40 S/X stations
- Large variety of radio telescopes
 - Diameter 6 m 100 m
 - Many slow and deformable "astronomical" telescopes
- 24-h sessions (on average 3.5 sessions/week):
 - Two sessions per week for EOP: R1, R4
 - TRF, CRF and R&D sessions
- Daily 1-h sessions for UT1-UTC (Intensives):
 - INT1, INT2, INT3

IVS

Today's IVS observing plan: VGOS

- VLBI Global Observing System (VGOS)
 - next generation VLBI system for Geodesy and Astrometry
- VGOS started in 2017, operational since 2020
- Today (2022): 10 operational VGOS stations
 - so far mainly northern hemisphere
- 24-h VGOS sessions:

- One session per week / every 2nd week for EOP, TRF, CRF
- 1-h VGOS sessions for UT1-UTC (VGOS Intensives):
 - Several sessions per week (e.g., V2, S2, B2, C2)

The VGOS concept

- Fast and stiff telescopes (12 °/s in azimuth, 6 °/s in elevation)
- Broadband receivers (2–14 GHz)
- Dual polarization
- Up to 2880 observations per day (ca. 6 times more than today)
- Electronic data transfer to the correlators (if possible)
- Expectation:

- one order of magnitude improvement w.r.t. legacy S/X VLBI
- Twin telescopes, e.g. Onsala, Wettzell, Ny-Ålesund
 - Improved handling of atmospheric turbulence
 - Connect VLBI and satellite methods

IVS

CHALMERS

Example: The Onsala twin telescopes

- Two identical VGOS telescopes @ 75 m distance
- OHB/MTM, 13.2 m diameter, ring-focus design
 - Surface accuracy < 100 μ m
 - Fast telescopes: 12 deg/s AZ, 6 deg/s EL
- Broadband receivers
 - Eleven-Feed on ONSA13SW (Ow), 2–14 GHz, H/V-pol
 - QRFH feed on ONSA13NE (Oe), 3–15 GHz, H/V-pol
- Phase- and cable-calibration systems
- DBBC3 digital backends, one each
 - Full-VGOS: 8 IF covering 16 GHz in 2 polarizations
 - Up to 128 Gb/s sampling capacity
- Flexbuff recorders (today 1 PB storage capacity)
- Fibre optics connections > 10 Gb/s

Station position repeatability, VGOS 2019–2021.

VGOS Simulations vs. VGOS Real Data

=> VGOS Real Data performance is only slightly worse than VGOS simulations.

Station positions: S/X legacy vs. VGOS

Analysis of S/X legacy data 2019–2021 (Ref. Nilsson, Haas, Varenius, IVS GM 2022)

Analysis of VGOS data 2019–2021 (Ref. Nilsson, Haas, Varenius, IVS GM 2022)

=> Today's VGOS is about a factor of 2.5 better than legacy S/X.

Baseline repeatability: VGOS vs. S/X legacy

EOP VGOS vs. S/X legacy

Series	$\sigma_{ m mean}$	$\sigma_{ m median}$	RMS	Bias	STD
All BKG INT1/INT2	14.8	14.2	32.9	14.3 ± 3.4	29.6
All GSF INT1/INT2	15.1	13.2	28.3	-2.0 ± 3.2	28.2
All USN INT1/INT2	14.6	12.9	28.4	8.5 ± 3.1	27.1
All GIS INT2	13.5	9.2	33.6	10.2 ± 6.7	32.0
All IAA INT1/INT2	15.0	12.2	27.8	5.0 ± 3.6	27.3
All OSO INT1/INT2	16.5	15.4	31.0	4.5 ± 3.6	30.6
OSO VGOS-B	4.5	4.2	23.2	-3.8 ± 7.2	22.9
Simultaneous OSO INT1	16.0	14.2	28.4	-0.8 ± 9.0	28.3
Simultaneous BKG INT1	17.3	16.1	32.9	8.4 ± 10.1	31.8
Simultaneous GSF INT1	18.8	16.8	24.2	-7.6 ± 7.3	23.0
Simultaneous USN INT1	14.3	14.4	27.9	5.4 ± 9.1	27.4

Comparison of UT1-UTC from simultaneously observed VGOS and S/X legacy Intensives. (Ref. Haas *et al.*, EPS 2021)

Comparison of EOP from simultaneous VGOS and S/X legacy w.r.t. GNSS results. (Ref. Nilsson, Haas, Varenius, IVS GM 2022)

=> VGOS is superior for UT1-UTC, but still slightly worse for polar motion.

Department of Space, Earth and Environment

VGOS Research and Development Sessions

- Goals are to further develop VGOS, e.g.:
 - Test new observation strategies, e.g. short scan length
 - Test frequency setups

- VGOS R&D in 2021/2022:
 - Short scans: e.g. VR2101 minimum and average scan length 7 s and 11 s, respectively
 - Many observations: e.g. VR2101 3397 scans, 23040 observations
 - Allows to resolve tropospheric parameters with 5 min temporal resolution (new!)
- All sites: co-located GNSS, often several ones
- Onsala: co-located GNSS and WVR

CHALMERS

Department of Space, Earth and Environment

Onsala: VGOS – GNSS – WVR

Onsala twin telescopes Oe (O13E), Ow (O13W)

CHALMERS

ONSA

Konrad (OWVR)

Department of Space, Earth and Environment

VR2202, Onsala ZTD: VGOS, GNSS, WVR

ZTD VGOS vs. WVR

Department of Space, Earth and Environment

VR2202, Onsala GRAD: VGOS, GNSS

Department of Space, Earth and Environment

VR2202, Onsala GRAD: VGOS, WVR

Gradient East, VGOS vs. WVR

Department of Space, Earth and Environment

CHALMERS

VGOS radio source imaging

Example radio source 1803+784 (Ref. Xu et al., JGR 2021)

=> VGOS allows broadband imaging to investigate radio source structure.

VGOS flux density monitoring

=> Important to have correct flux density information for VGOS scheduling.

Fig. 3 The multi-frequency light curve of the source 0059+581, as observed in the FM-sessions, shown separately to appreciate the rich variability. Flux densities in the four VGOS bands 1, 2, 3 and 4 are shown with black crosses, red circles, green squares and blue dots respectively

Summary

The IVS currently rolls-out a phantastic and very powerful new observing system: => VGOS

- It outperforms S/X legacy VLBI already today in terms of station positions, baseline repeatability, and UT1-UTC
- It is still slightly weaker for polar motion than S/X legacy VLBI due to worse network geometry (so far only 10 NH operational stations)
- It allows to address atmospheric turbulence
- It makes routine broadband radio source imaging possible
- It can derive "real time" flux density from e.g. twin telescope observations

CHALMERS

Chalmers University of Technology

IVS *

Outlook: IVS VGOS network in 5–10 years

New VGOS stations

Department of Space, Earth and Environment

Outlook: IVS plan for the next 10 years

- VGOS shall become "the work horse of the IVS"
 - Using VGOS for all IVS products, i.e. CRF, EOP TRF
 - Multi-frequency CRF: Continue S/X CRF and build up VGOS CRF

• IVS needs:

- ca. 40 globally distributed VGOS
- ca. 30 globally distributed legacy S/X stations
- Sufficient number of correlator stations
- Future IVS observation plan
 - Twice daily VGOS UT1-UTC determination with low latency
 - Several 24-h VGOS sessions (12+ stations) per week for EOP/TRF
 - Several 24-h VGOS and S/X CRF sessions per year
 - Additional R&D sessions

Challenges for the IVS?

- IVS is a best effort and non-profit organisation
 - Relies solely on the IVS member institutions, no common money
- Establishing new VGOS stations is expensive and takes time
 - VGOS roll-out is slower than expected, but more stations to come in the next 2–5 years
 - Several stations have not yet reached "full-VGOS" specifications
- Potential risk of increased RFI in VGOS bands, e.g. 5G, Starlink, ...
 - Initiatives on IAU and IUGG level to protect VGOS bands
- VGOS produces huge amount of raw data
 - currently ca. 25 TB per station during 24 h (will increase to even 50 TB)
 - bottleneck problems at the correlator end
 - more IVS correlators are needed

CHALMERS

Questions?

Department of Space, Earth and Environment