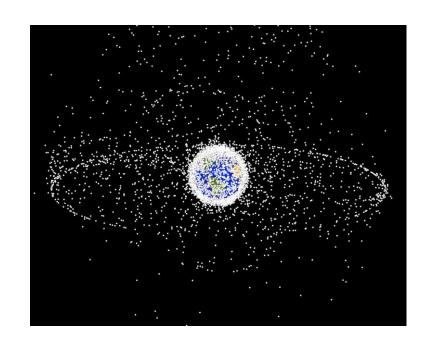
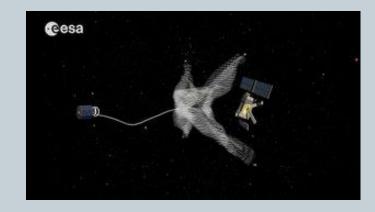
Investigation into the rotational dynamics of the defunct satellite TOPEX/Poseidon

LUC SAGNIÈRES, INNA SHARF, AND FLORENT DELEFLIE

IWLR2018


CANBERRA, AUSTRALIA
9 NOVEMBER 2018

Outline


- 1) SPACE DEBRIS ATTITUDE DYNAMICS
- 2) DEBRIS SPIN/ORBIT SIMULATION ENVIRONMENT (D-SPOSE)
- 3) TOPEX/POSEIDON ATTITUDE ANALYSIS

Active Debris Removal (ADR)

- Launch removal spacecraft
- Rendez-vous with target debris
- Analyse target motion
- Stabilize and capture
- De-orbit and burn

- Capture technologies include:
 - o Robotic arm
 - o Net
 - Harpoon

Rotational Motion of Space Debris

- Need to accurately know rotational motion of target debris for Active Debris Removal before launch of removal spacecraft
- Environmental torques:
 - Gravity gradient
 - Magnetic torques
 - Aerodynamic torque
 - Radiation torques
 - Particle bombardment

 Accurate attitude estimates also improve orbit predictions for conjunction analyses

Debris Spin/Orbit Simulation Environment (D-SPOSE)

- Can we build a flexible and comprehensive tool to analyze and predict the rotational motion of large space debris?
- Tool will be publicly available by the end of 2018 / early 2019

Model Equations and Perturbations

Orbit:

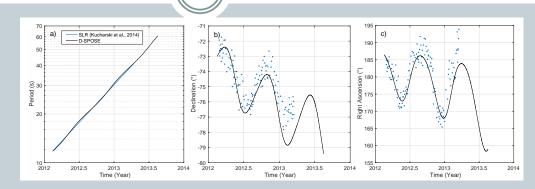
1) $\ddot{\mathbf{r}}(t) = -\frac{\mu}{r(t)^3} \mathbf{r}(t) + \sum_i \mathbf{a}_j(t, \mathbf{r}(t))$

Attitude:

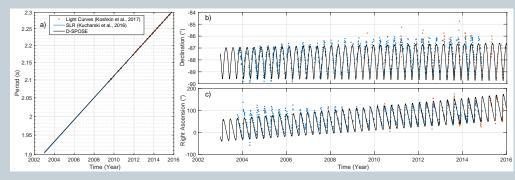
2)
$$\mathbf{I}\dot{\omega}(t) + \omega(t)^{\times} \mathbf{I}\omega(t) = \sum_{j} \tau_{j}(t, \mathbf{r}(t))$$

3) $\dot{\mathbf{q}}(t) = \frac{1}{2}\Omega(\omega)\mathbf{q}(t)$

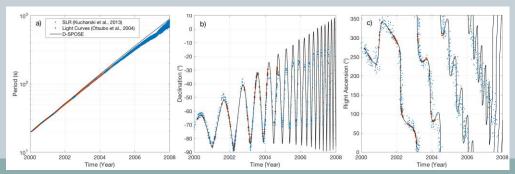
3)
$$\dot{\mathbf{q}}(t) = \frac{1}{2}\Omega(\omega)\mathbf{q}(t)$$


Perturbation	Environmental Model
Gravitational perturbations and	EGM2008
gravity gradient torque	
Third-body perturbations	Ephemeris
Aerodynamic drag and torque	DTM-2013; NRLMSISE-00; JB-2008; HWM14
Eddy-current torque	IGRF-12; WMM
Solar radiation pressure and torque	Montenbruck and Gill
Albedo and IR acceleration and torque	Stephens; CERES; ECMWF
Internal energy dissipation	Kane Damper
Hypervelocity impacts	Sagnières and Sharf; MASTER-2009

Model Input

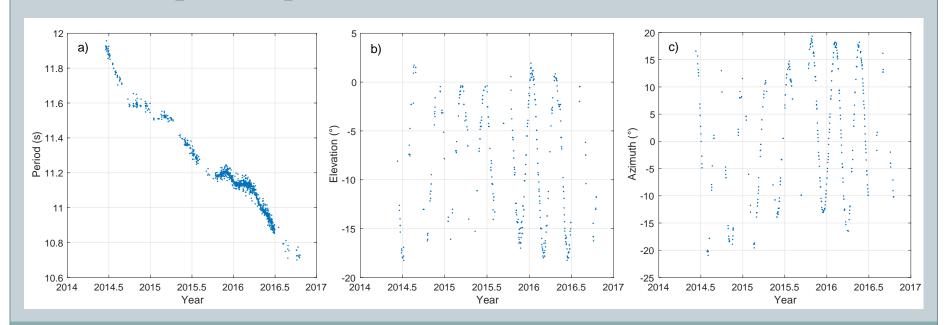

- Spacecraft Geometry (list of triangular surfaces)
- Time Parameters (propagation length and time step)
- Spacecraft Parameters (inertia and magnetic tensors, surface optical coefficients)
- Initial Conditions (initial orbit, attitude and angular velocity)
- Model Parameters (selected perturbations, chosen environmental models)

Validation from SLR Observations and Light Curves



AJISAI

LAGEOS-2



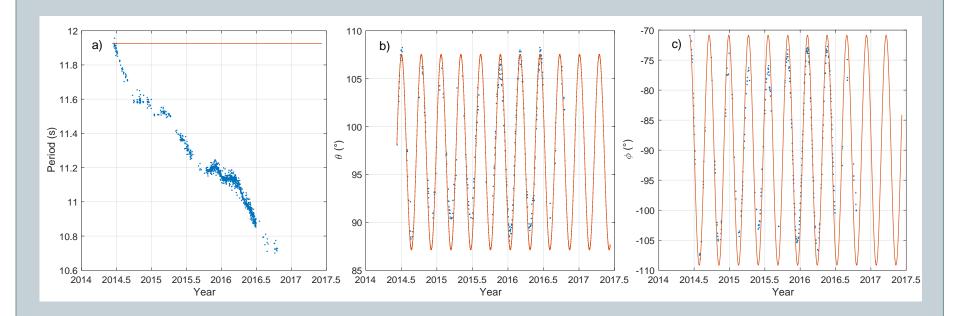
TOPEX/Poseidon Attitude Analysis

- Application of D-SPOSE to TOPEX/Poseidon in order to shed light on spacecraft rotational dynamics
- Possibility to investigate its unknown spacecraft parameters (moments of inertia, magnetic properties, etc...)

SLR Observations

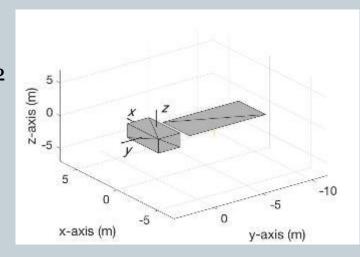
- High repetition rate SLR observations show increase in spin period due to solar radiation pressure (Kucharski et al., 2017)
- Oscillations in spin axis elevation and azimuth are present
- Can D-SPOSE replicate these observations?
- Most important parameters, moments of inertia, are unknown

Moments of Inertia from Observations

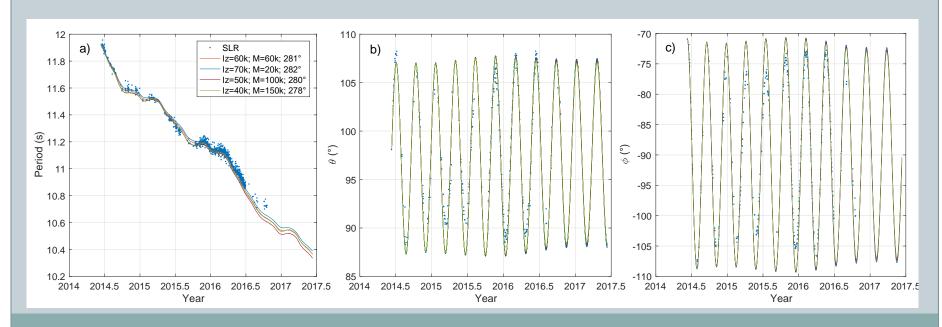

- Gravity-gradient torque forces closed loop motion in reference frame precessing with the orbit (Holland and Sperling, 1969).
- From observation of spin axis (z-axis), we can obtain relationship between moments of inertia as a function of orbital parameters and spin axis orientation:

$$\frac{d\mathbf{L}}{dt} = \frac{3m}{4r^3} \frac{H}{L^2} L_z \begin{vmatrix} -L_y \\ L_x \\ 0 \end{vmatrix} - W \times \mathbf{L} \triangleright \frac{I_x + I_y - 2I_z}{I_z} = \frac{4r^3\omega}{3\mu} (-\dot{\Omega}\sin i \csc\theta \sin\phi + \dot{\Omega}\cos i \sec\theta)$$

- From SLR observations, it was found that: $I_x + I_y = 2.83I_z$
- Spacecraft in a stable minor-axis spin?


Gravity-Gradient Torque Only

- Using $I_x + I_y = 2.83I_z$
- Results independent of I_x, I_y, and I_z as long as relationship holds


Propagator Input

- Other unknowns include the magnetic properties (eddycurrent torque) and the spacecraft geometry (orientation of solar panel plays large role in effect of SRP)
- Spacecraft spinning counterclockwise about z-axis
- I_z was varied from 70k to 40k kg m²
- Axisymmetry assumed (I_x=I_y); further tested afterwards
- Magnetic tensor and solar panel orientation (rotating about y-axis) were varied to fit observations

Simulation Results

- Spin evolution well captured by various simulations
- Amplitude of oscillations were found to vary due to radiation pressure
- Approx. linear relationship between I_z and M: $I_z = 75000 0.25M$
- Solar panel orientation close to Kucharksi et al. (2017) value
- Even with Kane damper, spacecraft in stable minor-axis spin (depending on damper characteristic: when dissipation is strongest, spacecraft eventually evolves into major-axis spin after a few years)

Conclusions

- From observations, a relationship between the moments of inertia was determined: $I_x + I_y = 2.83I_z$
- A linear relationship exists between I_z and M: $I_z = 75000 0.25M$; relationship between I_x and I_y is unknown.
- Simulations show TOPEX/Poseidon is spinning in a stable manner about minor axis
 - o Currently doing energy checks to validate this
 - Looking at effect of Kane damper characteristics on spin stability
- A maximum value of I_z is 75,000 kg m^2 ; obtaining a better estimate of the magnetic tensor will provide additional info on the moments of inertia, which, in turn, will provide more accurate estimate of solar panel orientation
- D-SPOSE will be publicly available by end of 2018 / early 2019 on the McGill Aerospace Mechatronics Laboratory GitHub: https://github.com/McGill-AML