

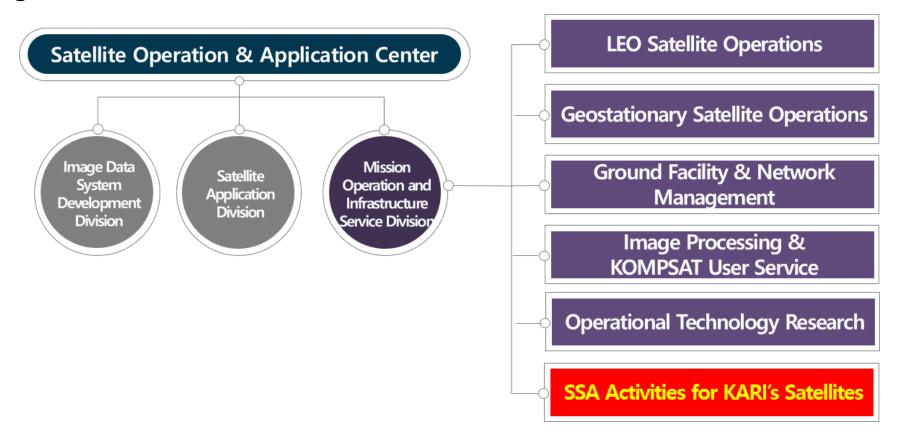
Enhancement Software Package for Collision Risk Mitigation in KARI

Jaedong Seong*, Okchul Jung, Deawon Chung

9 November 2018


21th IWLR, Canberra, Australia

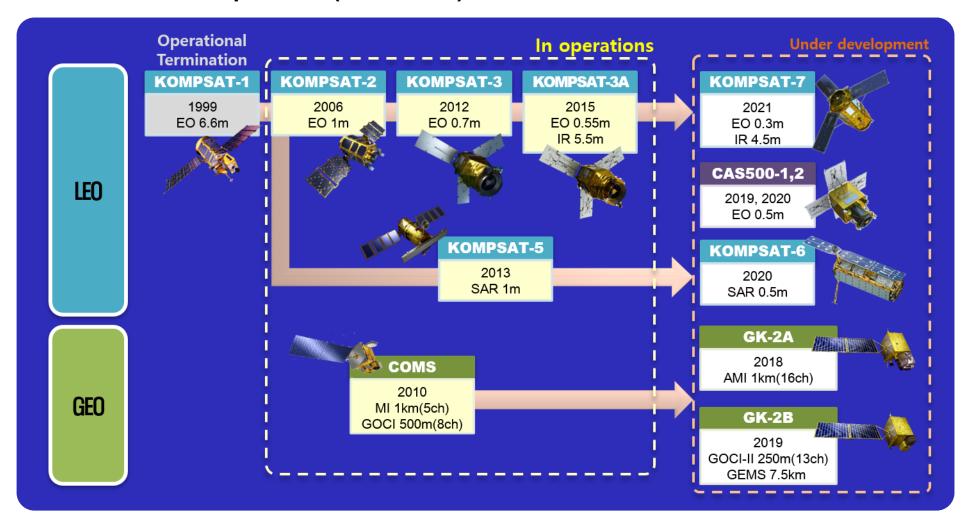
Background


- 1. Satellite Operation & Application Center
- 2. KARI's Role in SSA Activities
- 3. KARI Satellite Operations
- 4. Conjunction Assessment & Mitigation

Satellite Operation & Application Center

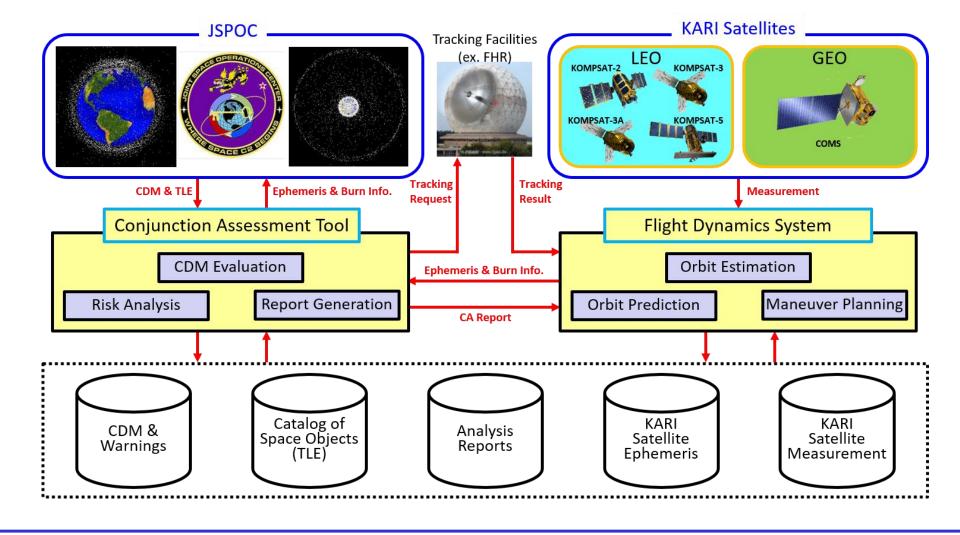
- Specialized national agency dedicated to satellite operations and satellite information applications
- Organizational Structure

KARI's Role in SSA Activities


- SSA Activities is in KARI's <u>Articles of Association</u>
 - Collision Risk Managements for National Space Assets (Satellites, Launch Vehicles)
 - Development of Space Debris Risk Mitigation Technologies
- Documentation
 - The government (Ministry of Science, ICT and Future Planning) has released the document,
 'Manual for Space Hazards'
 - In accordance with government document, the KARI also revised the operational manual
 - Doc. ID: KMO-QP-740-001
 - Doc. Title: Operational Manual against the Conjunction Events
 - Doc. Version: Rev. 4
 - The first version was released in 2010
 - The document is being updated as required
 - The revision 4 includes the comprehensive instructions with respect to the detail activities against the conjunction events

KARI Satellite Operations

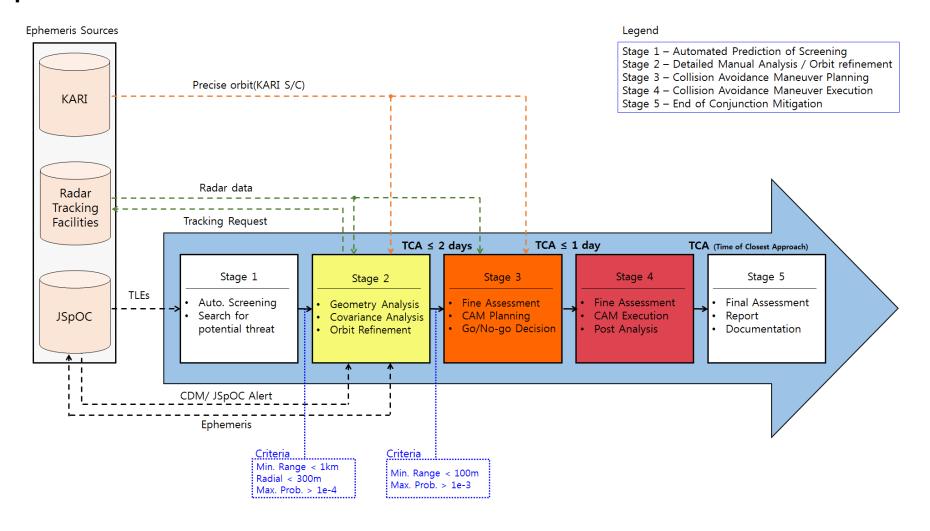
KARI Satellites in Operation (As of 2018)





Conjunction Assessment & Mitigation (1/3)

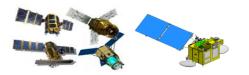
Overview of KARI Activities for SSA



Conjunction Assessment & Mitigation (2/3)

Operational Procedure

Conjunction Assessment & Mitigation (3/3)



• CA Criteria & Results

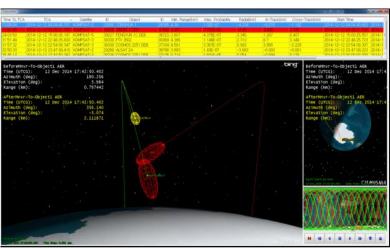
Action	Data	Time to TCA (day)	Orbit	Min Range (m)	Radial Dist (m)	Coll. Probability
Weekly & Monthly Report	TLE, CDM	7	LEO	1000	300	1.00E-04
			GEO	5000		
Fine Assessment	CDM	3	LEO	500		
			GEO	3000		
JSpOC EPH Transfer	CDM	3	LEO	300		
			GEO	2000		
COLA	CDM, Other	2	LEO	100		1.00E-03
			GEO	3000		

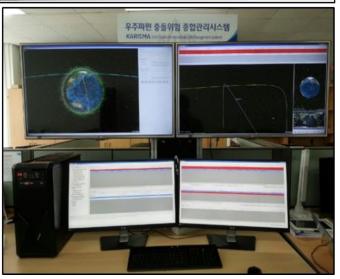
Action	KOMPSAT-1	KOMPSAT-2	KOMPSAT-3	KOMPSAT-5	KOMPSAT-3A	сомѕ	TOTAL
Weekly & Monthly Report	2	12	13	22	15	3	67
Fine Assessment	0	5	6	8	6	0	25
JSpOC EPH Transfer	0	4	5	8	2	0	19
COLA	0	0	0	1	0	0	1
TOTAL	2	21	24	39	23	3	112

CA Results (1 Jan 2018 ~ 31 Aug 2018)

Issues

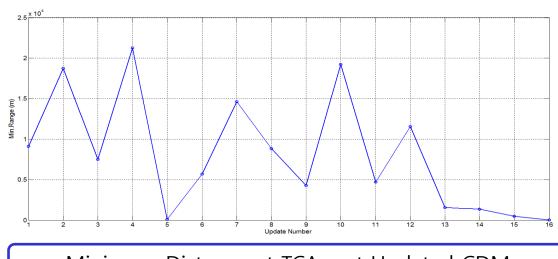
- 1. Existing CA Tool: KARISMA
- 2. KOMPSAT-5 vs. FENGYUN 1-C DEB
- 3. Normal Maneuver & Conjunction Risk
- 4. Etc.




Existing CA Tool: KARISMA

Tool: KARISMA (KARI Space Debris Collision Risk Management System)

- 24/7 Operational (Automated) SINCE August 2014
- COTS based conjunction assessment tool (AGI/STK)
- Major Functions
 - Conjunction Assessment (Coarse using TLE, Fine using CDM)
 - Optimized Collision Avoidance Maneuver Planning
 - Precise Orbit Determination & Prediction
- Data Sources
 - JSPOC TLE (download twice a day)
 - JSPOC CDM (download every 2 hours)
 - Precise Ephemeris (In-house ephemeris of KARI satellite)
 - Radar Tracking Data
 (External Sources-FHR[Germany], if necessary)

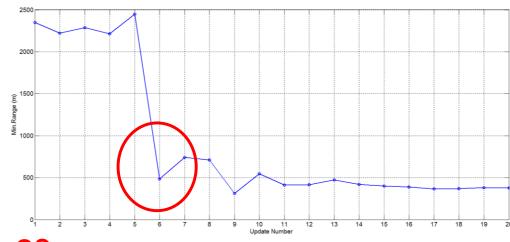

KOMPSAT-5 vs. FENGYUN 1-C DEB

- Conjunction event at 3 Mar 2018 04:28:51 (UTC) over North Pole
- FENGYUN 1-C DEB was small object (RCS = 0.02m²)
- Total 16 CDM were provided from JSpOC (Latest CDM arrived 2 hours before TCA)
- Min. range of CDM was changed dramatically (11,553m > 1,546m > 1,380m > 475m> 17m (TCA 2Hr))
- There was not enough time for collision avoidance maneuver planning and

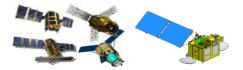
execution

- Maneuver planning
- Conjunction assessment
- Generate maneuver command
- Contact and upload command
- Execution maneuver

Minimum Distance at TCA w.r.t Updated CDM

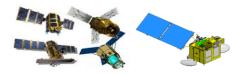

Normal Maneuver & Conjunction Risk

12


Mane. (2017/11/16 2	Mane. (2017/11/16 23:00:00, Alt. +10m)		After Mane.	
COCMOC 2254 DED	Min. Range	43m	1,491m	
COSMOS 2251 DEB	Coll. Probability	5.2E-03	1.0E-06	
	Min. Range	2,448m	377m	
FENGYUN 1-C DEB	Coll. Probability	1.0E-06	1.5E-05	

- KOMPSAT-5 performs regular maneuver for InSAR mission twice a month.
- After maneuver, conjunction risk of COSMOS 2251 DEB was decreased but another object (FUNGYUN 1-C DEB) was much closer than before.

→ KARI shares the maneuver plan with JSpOC,

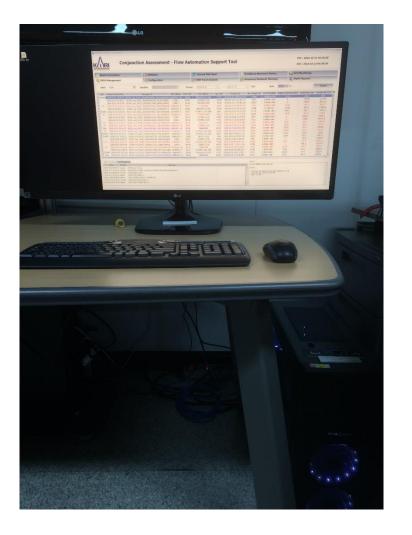

JSpOC reflects the information in conjunction assessment

Etc.

- Automated documentation
- Trend analysis
- Browsing object information
- GEO station keeping box monitoring
- Statistics

Enhancement Software Package: CA-FAST

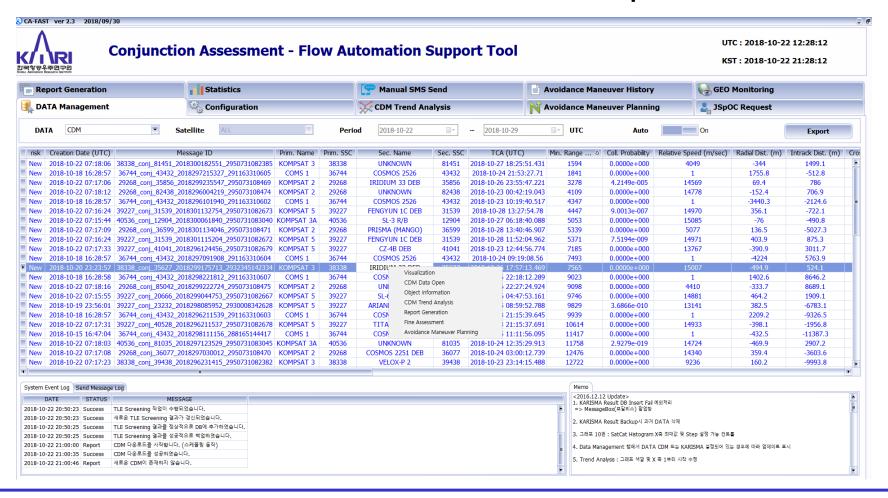
- 1. CA-FAST
- 2. Data management
- 3. CDM trend analysis
- 4. Avoidance maneuver planning
- 5. JSpOC Interface
- 6. Report generation
- 7. GEO monitoring



CA-FAST

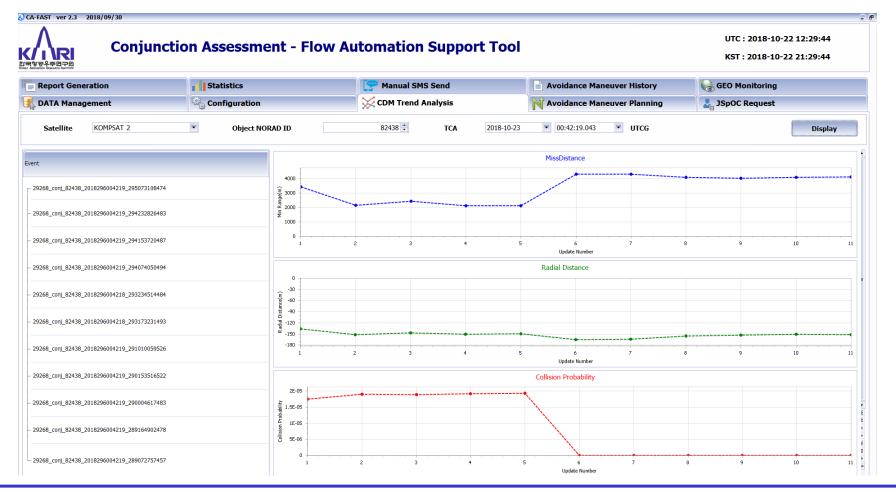
Conjunction Assessment Flow Automation Support Tool

- 24/7 Operational (Automated) SINCE October 2016
- COTS based conjunction assessment tool (AGI/STK)
- 1 Desktop PC
 - Window 10 (64bit), I7 8700k, 32GB RAM, SSD storage
- Development language: C#, MATLAB
- Functions
 - Data management
 - CDM trend analysis
 - Avoidance maneuver planning
 - JSpOC Interface
 - Report generation
 - GEO monitoring
 - Statistic



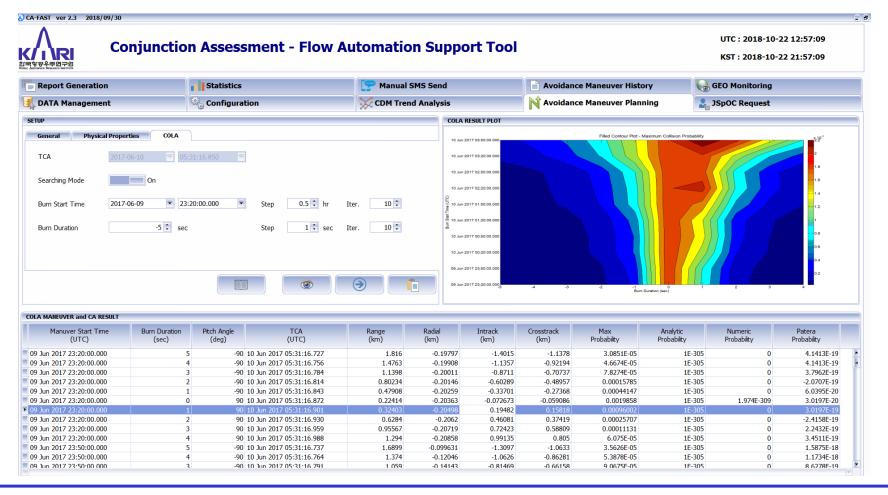
Data management

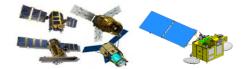
- JSpOC CDM are mainly used automatically (updated every 30 min.)
- E-mail and SMS Alarm available when risk event reaches specific criteria



CDM trend analysis

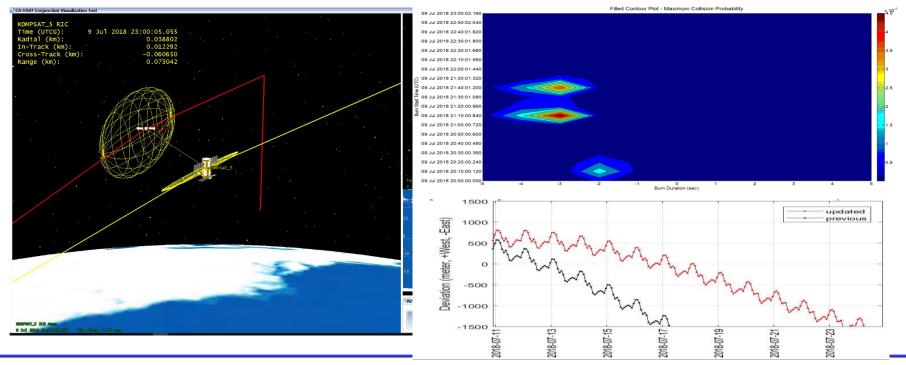
- CDM trend analysis from multiple CDM of specific conjunction event
- Min. Range, Radial Distance, Collision Probability (Foster's method)

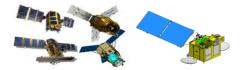




Avoidance maneuver planning (1/2)

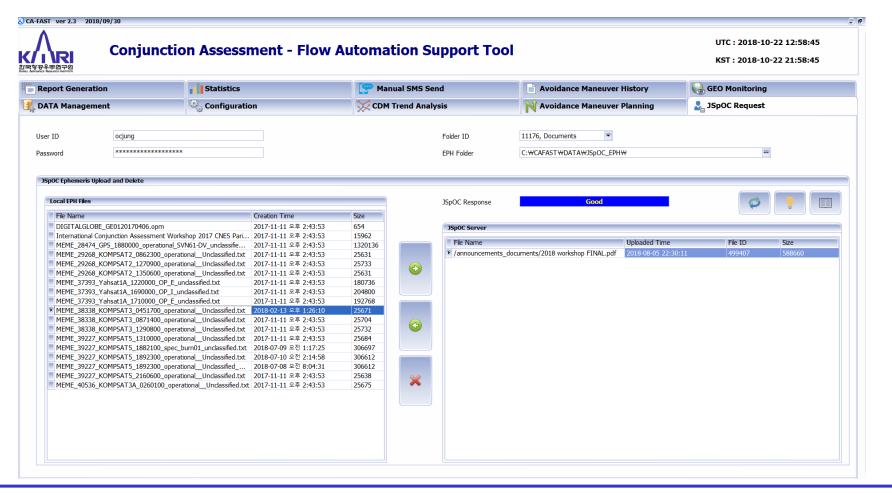
- Conjunction assessment for various maneuver cases in a short time
- Precise orbit prediction with maneuver using engine modeling and BC* estimation

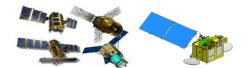



Avoidance maneuver planning (2/2)

Recent High-Risk Conjunction for KOMPSAT-5

- Conjunction Event between KOMPSAT 5 and CZ-4 DEB (9 Jul 2018 23:00:05)
- Min. Range = 44m, Max. Probability = 2.8E-03
- Perigee Increasing Burn (TCA 1 Hr) while maintaining the ground track boundary
- After avoidance maneuver, Max. Probability decreased to 7.17E-04





JSpOC Interface

- Orbit prediction data transfer after maneuver planning (normal and COLA)
- KARI-JSpOC(Space-track.org) interface through the API using cURL

Report generation

Weekly and Monthly conjunction assessment summary

- Fine assessment report (Before TCA)
 - Outline
 - Trend analysis using CDM
 - Covariance analysis using CDM
 - Conjunction analysis (Primary: OP, Secondary: CDM)
- Post analysis report (After TCA)
 - Outline
 - Trend analysis using CDM
 - Trend analysis using TLE
 - Covariance analysis using CDM
 - CDM accuracy analysis for Primary object
 - Conjunction analysis (Primary: POD, Secondary: CDM)

문서번호 : CA-18-003-K5

작성일: 2018-03-02 (금)

한국항공우주연구원 위성운영실

우주물체 충돌예측 상세분석 결과

○개요

- 우주물체가 아리랑위성 5호 (S/C ID : 39227)에 가까이 접근함
- 물체 종류: FENGYUN 1C DEB (Catalog ID: 31785)
- 근접 예상 시간 : 2018년 2월 27일 22:14:37 (UTC)
- 근접 예상 위치 : 북극 상공

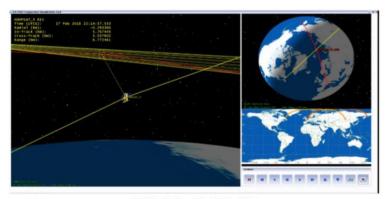
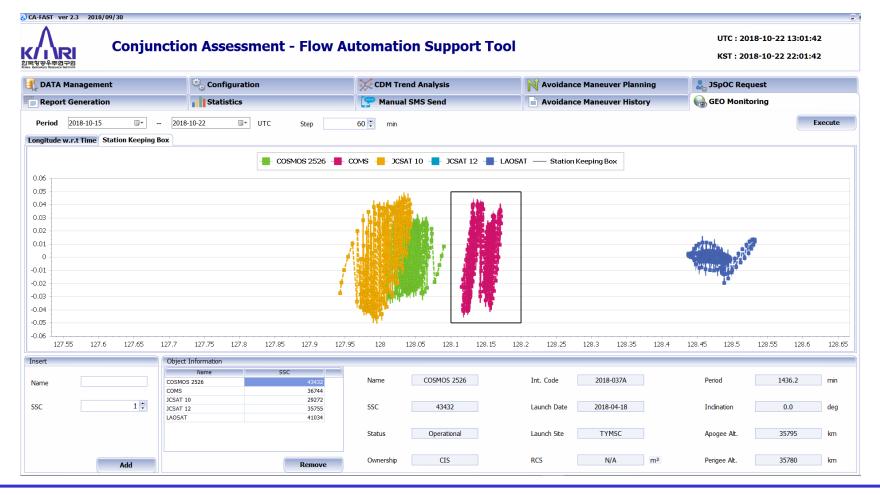


그림 1 3D Graphics(북극 상공)

소유국	PRC		발	사일	1999-05-10			
궤도 장반경 (km)	6914		원지점	고도 (km)	562.4			
궤도경사각 (deg)	96.5		근지점 고도 (km)		525.3			
궤도 주기 (min)	95.4		RCS (m²)		0.0087 (small)			
상세 정보	해당	물체는	2007년	중국의	위성요격실	험으로	발생한	폭발
	파편이	마다.						


표 1 근접물체 정보

GEO monitoring

- GEO station keeping box monitoring around COMS using multiple TLE
- Identification potential risky objects, which intrudes station keeping box

Summary

Summary

- Enhanced software 'CA-FAST' developed to supplement existing CA tool
- Successful 2 years operation including collision avoidance maneuver planning
- Continuous update required to satisfy the varying operational environment
- Future work
 - More automated and immediate system according to multiple satellites and complexity of satellite operations
 - External interface and data standardization with other group in preparation for Space Traffic
 Management

