

A new Australian conjunction assessment and threat warning service

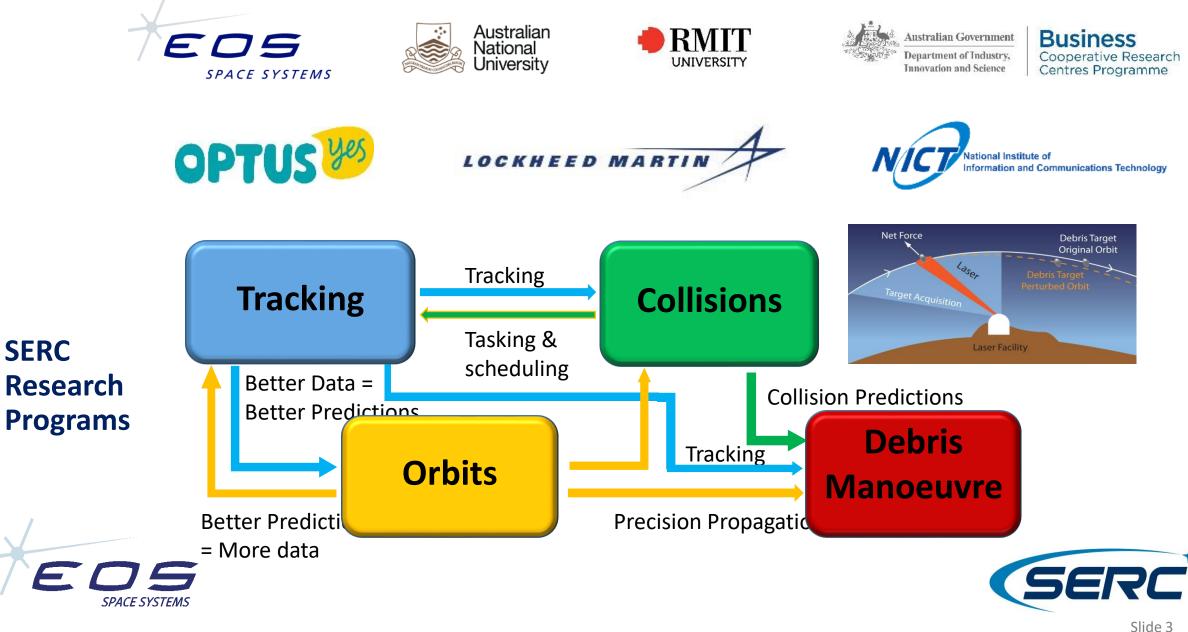
James C. S. Bennett

Astrodynamics Group Leader, EOS Space Systems Pty Ltd

Space Asset Management Program Leader, Space Environment Research Centre

INTERNATIONAL WORKSHOP ON SPACE DEBRIS MANAGEMENT, 9th November 2018

Business Cooperative Research Centres Program


Overview

- Brief introduction to SERC
 - RP3: Space Asset Management program
- Progress in operational conjunction and threat warning service.
- Timeline to initial operational capability and full operational capability.

SERC Founding Participants

The current team

Research staff:

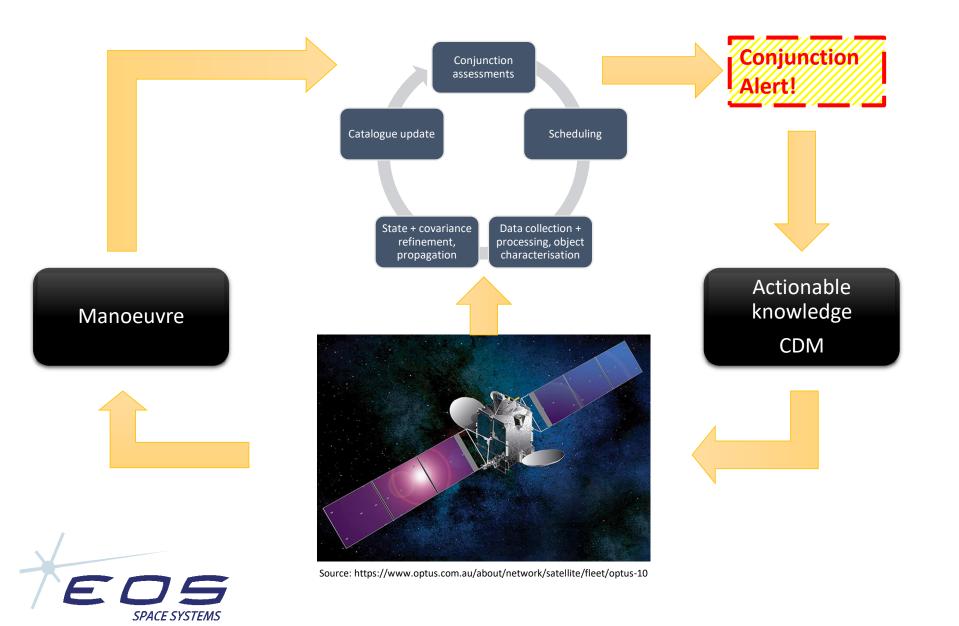
- Dr James Bennett
- Dr Daniel Kucharski
- Dr Marek Möckel
- Dr Michael Lachut
- Dr Sven Flegel
- Mr Jeffrey Wardman
- Mr David Kooymans
- EOS Space Systems Team
- Industrial Sciences Group

PhD Candidates:

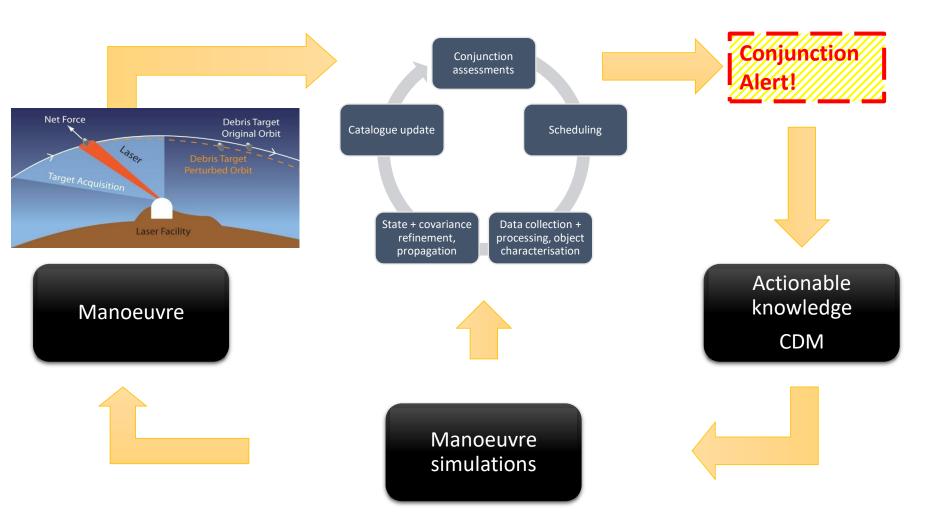
- Mr Joseph O'Leary
- Mr Richard Samuel
- Mr James Allworth
- Ms Hansani Kaushalya Perera THANIPPULI KANKANAMALAGE

Student Interns:

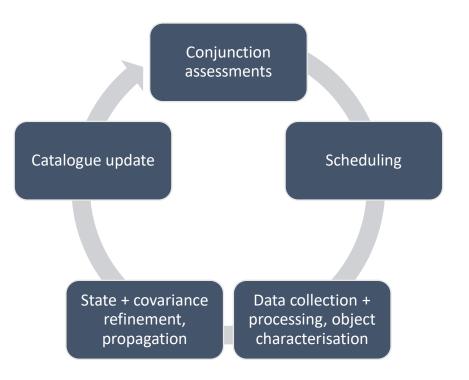
- Thomas La
- Nathaniel McGrath


Other RP3 presentations

Tue 6th	11:45	12:00	Gravity field determination using post-Newt energy integral	onian	Joseph O'Leary		University of South Australia / Space Environment Research Centre, Australia	
	12:00	12:15	Orbit determination and prediction accuracy TOPEX with a priori solar radiation force der from photometrics and laser ranging data		Michael Lachut		EOS Space Systems, Queanbeyan / Space Environment Research Centre, Mt Stromlo, Australia	
Fri 9th	14:15	14:30	Assessing GEO close encounter warnings fo spacecraft operations	r	Sven Flegel		Space Environment Research Centre, Canberra / Visiting Researcher to the Royal Melbourne Institute of Technology, Australia	
	16:15	16:30	High-definition Photometry - New tool for sp debris characterization	ace	Daniel Kucharski		Space Environment Research Centre, Canberra, Australia / The University of Texas, Austin, USA,	
			Design of a high-performance conjunction assessment service				e Environment Research Centre, Mt Ilo, Australia	
Fri 9th	ur ch be		Increasing the determinacy and uniqueness of solutions to the physical characteristics and non-natural behaviours of near-earth orbiting space objects		Samuel Austr		ace Environment Research Centre / stralian National University, Weston Creek, stralia	
	SD13 D		Design & development of an optimized eensor scheduling & tasking programme or tracking space objects			Indus	ndustrial Sciences Group, Sydney, Australia	



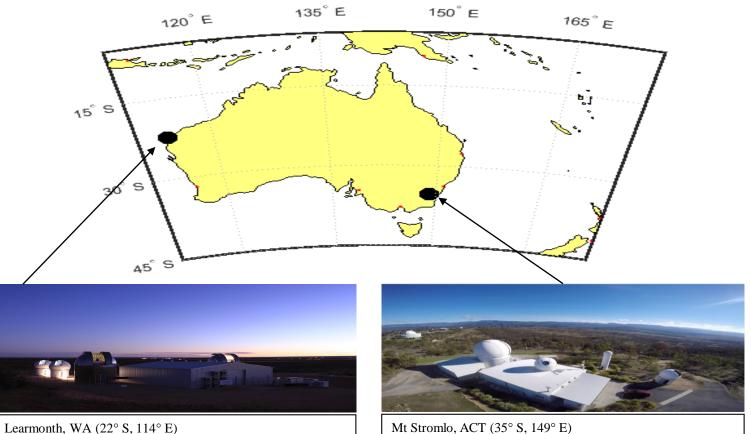
Research Program 3: Space Asset Management



E

- Sensors
- Scheduling
- Database/catalogue
- Object characterisation
- Orbit determination
- Error propagation
- Conjunction assessments

• Sensors


- Scheduling
- Database/catalogue
- Object characterisation
- Orbit determination
- Error propagation
- Conjunction assessments

Sensor network

- EOS Space Systems' Space Debris **Tracking Station at Mount Stromlo**
- New operational site at Learmonth
 - Collaboration between EOS Space Systems & Lockheed Martin with support from AUS DoD

Mt Stromlo, ACT (35° S, 149° E)

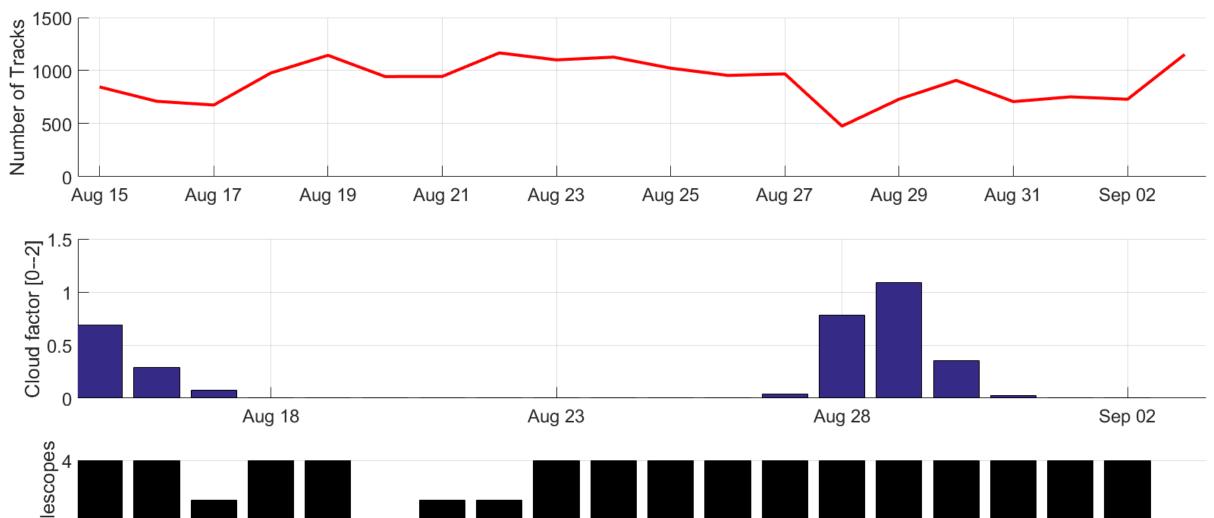
System ID	Site	Aperture	Configuration
A1	Mt Stromlo	1.8 m	Active + Passive
A2	Mt Stromlo	0.7 m	Passive
B1	Learmonth	1.0 m	Active + Passive
B2	Learmonth	1.0 m	Active + Passive
B3	Learmonth	0.7 m	Passive
B4	Learmonth	0.7 m	Passive
			Slide 10

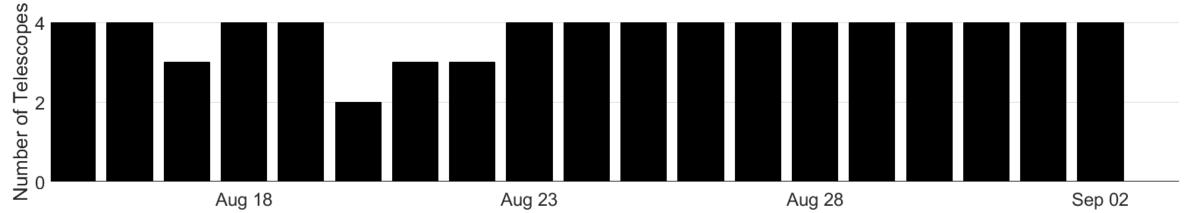
Sensor network – Mt Stromlo

Mt Stromlo, ACT (35° S, 149° E)

Slide 11

Learmonth, WA (22° S, 114° E)


Mt Stromlo, ACT (35° S, 149° E)

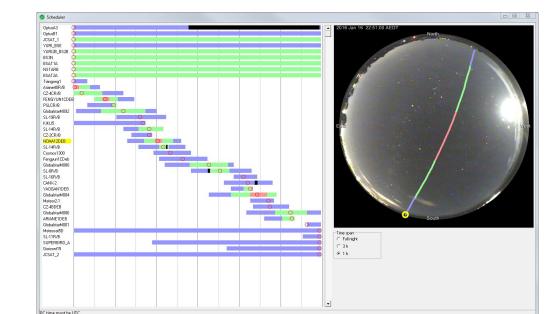


Slide 12

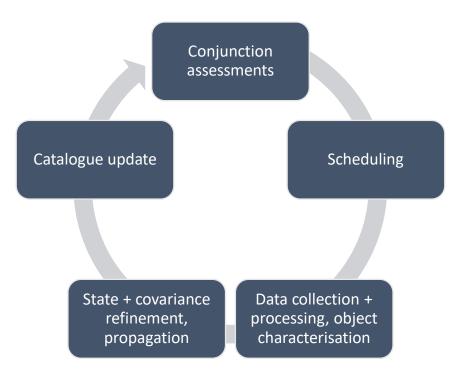
Recent tracking – Learmonth only

• Sensors

- Scheduling
- Database/catalogue
- Object characterisation
- Orbit determination
- Error propagation
- Conjunction assessments



Network scheduling


- EOS have several methods of tasking the network
- SERC have developed an information gain based scheduler that
 - Started by Dr. Steve Gehly*
 - Recoded for use in operations (James Allworth)
 - Interface with EOS sensor network completed and singlesensor testing has been achieved.
 - Contracted to The Industrial Sciences Group: <u>http://www.industrialsciences.com.au/</u>
 - Phase 1 completed, multi-sensor functionality across 6 active and passive sensor network, under testing.
 - Phase 2 started
- Phase 2 of the scheduler will see it optimised in C++ to handle a larger network of sensors and a catalogue of 100,000+ objects (late 2018)

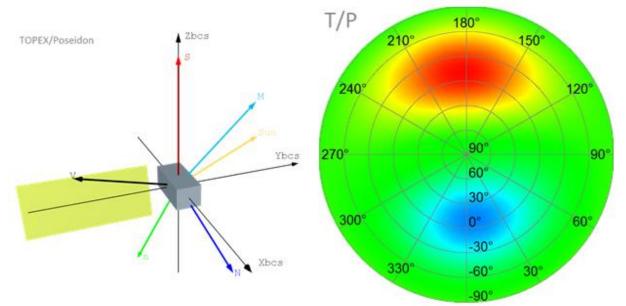
- Sensors
- Scheduling
- Database/catalogue
- Object characterisation
- Orbit determination
- Error propagation
- Conjunction assessments

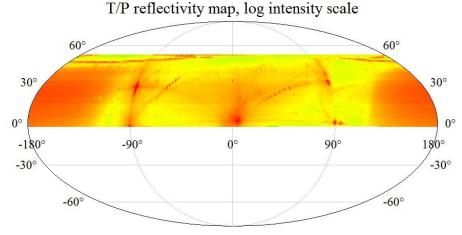
Database/Catalogue

- Central database-backed application
 - Storage, association, processing tracking data, light curves, object characteristics, calibrations
 - HTTP interface with small html frontend
- Relational database
 - Traceability e.g. Orbit determination: what tracks, what sensors, what force models, EOP, solar flux, observation weighting etc.
- Automation of track correlations & orbit determinations
- System monitoring

OD Summary		OD
•		00
ID	6464	Up
Satellite ID	13688	Up
Satellite Norad ID	40747	
Satellite Cospar ID	15036B	Ch
Satellite Name	DELTA 4 R/B	
OD Start Date	20180819000000	Ch
OD Span	8	
OP Span	7	
Record Status	SUCCESS	Ch
Reason		
Processing Started	20180828063013	Ch
Processing Completed	20180828141355	
Scope version	3.1.1	Ch
Orbital Period	1307.5	Ch
Inclination	26.1	
Apogee	66017	Ch
Perigee	445	
RCS	18.0698	
Orbital Regime	LGTO	Ch
Satcat Status	DEBRIS	
		Ch

Rerun OD


- Sensors
- Scheduling
- Database/catalogue
- Object characterisation
- Orbit determination
- Error propagation
- Conjunction assessments

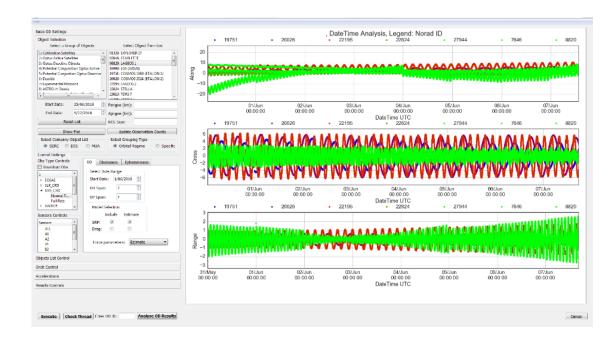


Object Characterisations

- Characterisation for the laser manoeuvre experiment, spin analyses
- High rate detector capable of 100 kHz sampling of photons
 - Mounted on the A2 telescope at Mt Stromlo
- Collaboration between SERC, EOS, Graz, NICT, Borowiec, University of Texas at Austin
- Andor Zyla 5.5 Front Illuminated sCMOS camera has been mounted to A2.

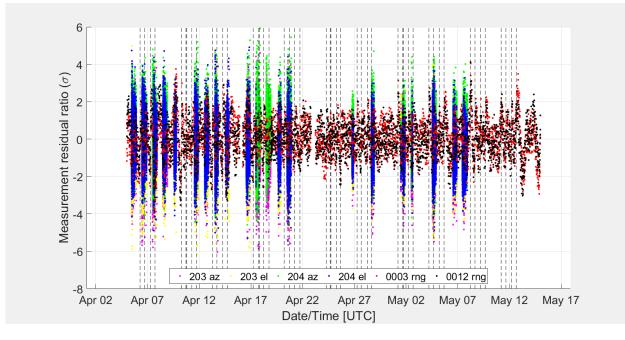
Left: TOPEX/Poseidon: satellite body and force vectors. Right: body surface response to the incoming photon flux indicates a larger area where the positive torque can be generated: red) spin-up, blue) de-spin.

Reflectivity map of TOPEX/Poseidon measured by Graz photon counting system on July 10, 2015


- Sensors
- Scheduling
- Database/catalogue
- Object characterisation
- Orbit determination
- Error propagation
- Conjunction assessments

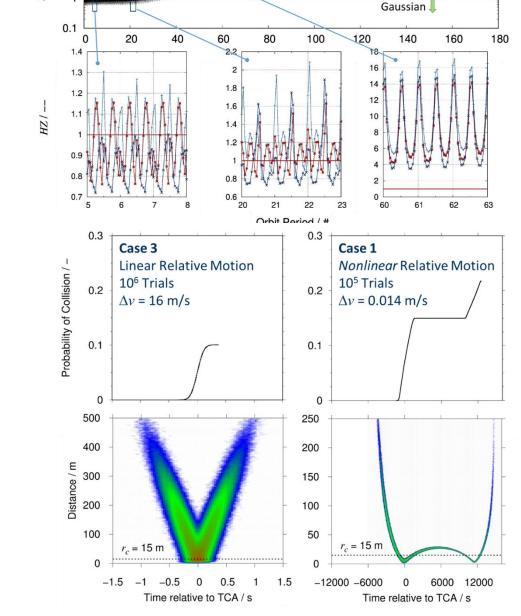
Orbit determinations

- In-house orbit determination software in C++;
- Automated ephemeris generation and sensor cueing
- Batch process, will also include filters and run side-by-side comparisons
- Störmer-Cowell predictor-corrector numerical integrator
- New observation sources can be integrated quickly
- Spherical/aspherical satellite geometry



Manoeuvre fitting

- Can successfully fit multiple manoeuvre types
- Example:
 - GEO object: Optus 10
 - 40 day OD, 49 SPT (N-S), 5 bi-prop (E-W)
 - Two station RF range, optical from B3 & B4.
- Needs to be automated
 - Automate delivery of manoeuvre plans
 - Automate manoeuvre detection algorithms
 - Collaboration with UT Austin & UNSW


- Sensors
- Scheduling
- Database/catalogue
- Object characterisation
- Orbit determination
- Error propagation
- Conjunction assessments

State uncertainty prediction

- Rigorous assessment of the breakdown in Gaussianity of the state uncertainty
 - Henze-Zirkler test for multivariate normality
 - Store in object catalogue, use for scheduling, conjunction assessments, track associations, OD assessments
- Probability of collision in conjunction assessments
- Actionable conjunction assessments

Non-Gaussian

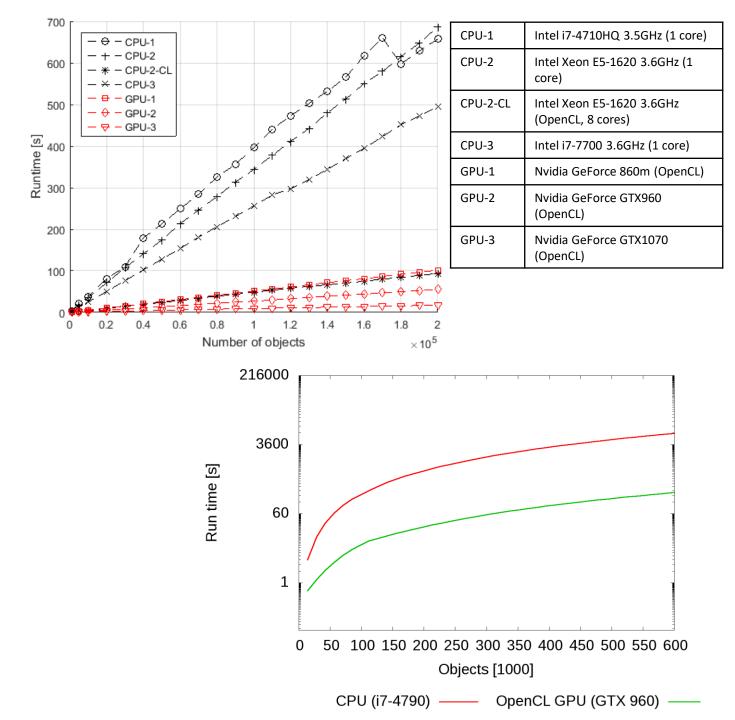
100

10

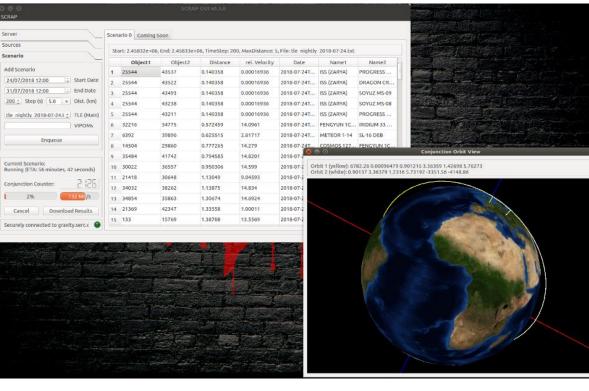
HZ /

CDM visualisation

Analyze CDM About			
Load CDM	Time from TCA [s]: Range [km]: Rel. Velocity [km/s]:	0.00 0.000619561 0.802656	SERC
Orbit Frame ECI Camera Focus Earth			
Draw Elements			
 Orbits Error Volume Error Axes Satellite Marker To Other 	<		
Satellite Properties GEO_EQUATORIAL Diameter [m]: 10.000 ♀ GEO_INCLINED Diameter [m]: 10.000 ♀			
Position Uncertainty Confidence [%]: 95.000 🜩			
	+/- 3:50:0.0		· · · · · · · · · · · · · · · · · · ·


- Sensors
- Scheduling
- Database/catalogue
- Object characterisation
- Orbit determination
- Error propagation
- Conjunction assessments

Conjunction assessments


- Parallelised conjunction assessments can run on multi-core CPU and GPU
 - Large speed-ups achieved with SGP4;
 - All-on-all 7-day conjunction assessment in 48 minutes, down from 8 hours
 - Generic propagator interface
- Implemented full force model numerical integration
 - Currently being parallelised
 - Early indication is scales linearly with number of objects
- Ability to integrate other ephemeris information such as operator ephemerides (e.g. Optus)

Simple interface

Conjunctions: 87451, Start Date: 2018-09-04T12:00:00, End Date: 2018-09-11T12:00:00 Compare

	ID 1	ID 2	Distance	Relative Velocity	Time	Name 1	Name 2
	31547	36658	0.0210061	10.5082	2018-09-09T06:02:38	FENGYUN 1C DEB	FENGYUN 1C DEB
	25490	38329	0.0287375	15.0094	2018-09-07T08:29:43	TAURUS R/B	DMSP 5D-2 F11 DEB
	31901	40500	0.0332068	11.3349	2018-09-10T18:02:05	FENGYUN 1C DEB	DMSP 5D-2 F13 DEB
	27126	37307	0.0424915	7.92719	2018-09-10T23:42:08	PSLV DEB	COSMOS 2251 DEB
	19922	29965	0.0454632	14.711	2018-09-06T01:29:52	SL-8 R/B	FENGYUN 1C DEB
	26930	33901	0.0476115	12.2392	2018-09-05T10:55:51	PICOSAT 9	COSMOS 2251 DEB
	134	31012	0.0480762	14.6184	2018-09-06T03:13:43	THOR ABLESTAR DEB	FENGYUN 1C DEB
	733	38510	0.0498728	14.4551	2018-09-11T01:03:51	THOR AGENA D R/B	FENGYUN 1C DEB
	31336	34570	0.05016	13.7216	2018-09-05T13:08:54	FENGYUN 1C DEB	COSMOS 2251 DEB
	31167	34270	0.0512025	14.7952	2018-09-05T01:13:41	FENGYUN 1C DEB	COSMOS 2251 DEB
	18681	38840	0.056241	13.7476	2018-09-08T07:18:06	SL-8 DEB	NOAA 8 DEB
	12373	42550	0.0579649	14.1192	2018-09-09T02:40:46	DELTA 1 DEB	THORAD AGENA D DEB
al an ann an	420	34011	0.0595775	4.76017	2018-09-08T06:57:05	THOR ABLESTAR DEB	COSMOS 2251 DEB
	42247	42425	0.0604704	13.8144	2018-09-11T07:59:41	SL-16 DEB	NOAA 16 DEB
	14223	31068	0.062459	14.9889	2018-09-09T00:59:07	SCOUT G-1 DEB	FENGYUN 1C DEB
	43547	43549	0.0629221	0.000460819	2018-09-09T01:05:09	TEMPEST-D	HALOSAT
	31491	37686	0.0653341	14.0745	2018-09-06T14:24:39	FENGYUN 1C DEB	FENGYUN 1C DEB
	32200	34192	0.0679	12.638	2018-09-05T23:53:11	FENGYUN 1C DEB	ARIANE 42P+ DEB
	35225	36309	0.071062	14.7817	2018-09-07T02:25:46	FENGYUN 1C DEB	METEOR 2-6 DEB
	31119	37988	0.0711577	14.1161	2018-09-10T15:40:36	SAUDICOMSAT 7	COSMOS 2251 DEB
	30053	35129	0.0753762	0.721383	2018-09-10T08:09:40	FENGYUN 1C DEB	FENGYUN 1C DEB
	41771	42051	0.0757076	0.648598	2018-09-10T03:00:17	SKYSAT C4	FLOCK 3P 72
	21797	37637	0.0758537	14.7205	2018-09-04T12:49:49	SL-8 R/B	DELTA 1 DEB
	6080	20891	0.0783068	14.4483	2018-09-10T01:14:52	SL-3 R/B	CZ-4 DEB
	31404	38310	0.0831987	2.70006	2018-09-09T01:42:24	METEOR 2-5 DEB	CZ-4B DEB
	36305	41858	0.0833316	14.969	2018-09-05T11:44:05	METEOR 1-11 DEB	CZ-2D R/B
	32101	36100	0.0840153	13.5813	2018-09-09T06:09:35	FENGYUN 1C DEB	DMSP 5D-3 F18 DEB
	41399	42245	0.0853848	14.689	2018-09-07T22:44:56	NOAA 16 DEB	SL-16 DEB
	33826	42416	0.0854106	11.7038	2018-09-05T21:47:37	COSMOS 2251 DEB	NOAA 16 DEB
	21796	30564	0.0865438	14.6248	2018-09-10T00:20:11	COSMOS 2173	FENGYUN 1C DEB
	10658	11134	0.0883476	14.2104	2018-09-07T20:53:03	DELTA 1 DEB	COSMOS 1057
	30660	40995	0.0885832	14.969	2018-09-06T15:03:25	FENGYUN 1C DEB	IRIDIUM 33 DEB
	29911	34472	0.0894965	14.8852	2018-09-10T03:29:41	FENGYUN 1C DEB	COSMOS 2251 DEB
	29899	30856	0.0904635	14.4428	2018-09-07T22:13:31	FENGYUN 1C DEB	FENGYUN 1C DEB
	17716	25114	0.0915027	13.5355	2018-09-11T08:14:36	THORAD AGENA D DEB	ORBCOMM FM 11
	26069	41353	0.092915	14.7861	2018-09-06T00:35:40	COSMOS 2369	NOAA 16 DEB
	12343	30684	0.0943078	13.867	2018-09-11T05:16:12	COSMOS 1174 DEB	FENGYUN 1C DEB
	13468	18161	0.0964023	12.1694	2018-09-07T03:10:33	COSMOS 1275 DEB	SL-8 R/B

Index of /archive/

/
2016-08-23/
2016-08-24/
2016-08-25/
2016-08-26/
2016-08-27/
2016-08-28/
2016-08-29/
2016-08-30/
2016-09-01/
2016-09-02/
2016-09-03/
2016-09-04/
2016-09-05/
2016-09-06/
2016-09-07/
2016-09-08/
2016-09-09/
2016-09-10/
2016-09-11/
2016-09-12/
2016-09-13/
2016-09-14/
2016-09-15/
2016-09-16/
2016-09-17/
2016-09-18/
2016-09-19/
2016-09-20/
2016-09-21/
2016-09-22/
2016-09-23/
2016-09-24/
2016-09-25/
2016-09-26/
2016-09-27/
2016-09-28/
2016-09-29/
2016-09-30/
2016-10-01/
2016-10-02/
2016-10-03/
2016-10-04/
2016-10-05/
2016-10-06/
2016-10-07/
2016-10-08/
2016-10-09/
2016-10-10/
2016-10-11/
2016-10-12/
2016-10-13/
2016-10-14/
2016-10-15/
2016-10-16/
2016-10-17/
2016-10-18/

Dup	licate entr	ies exc	luded 1.3%	Automated		
Low	velocity	entries	excluded 1.4%			
Of t	ne remain	ing ent	ries:	comparis	ons	
	d matches		99.38%	•		1 Cont
28-Aug-2018 01	iating in n			with:		-28
20-Aug-2010 01						-10 m
28-Aug-2018 01 Dev 28-Aug-2018 01	iating in r	elative				
28-Aug-2018 01 SCR	AP misse	s	0.21%			
28-Aug-2018 01						
28-Aug-2018 01	oc ID1	ID2	Name1	Name2	Ru Soc	Rv_Scr
28-Aug-2018 01 1 28-Aug-2018 01	39678	13499	SL-8 DEB *	EGYPTSAT 2	12.910	12.91
28-Aug-2018 01 2	43556	43557	AEROCUBE 12A	AEROCUBE 12B	0.000	0.0
28-Aug-2018 01 3	08799	30065	METEOR 1-24	FENGYUN 1C DEB	13.101	13.101
28-Aug-2018 01						
28-Aug-2018 01 4			FENGYUN 1C DEB	ORBCOMM FM 118	14.352	14.352
28-Aug-2018 01 5 28-Aug-2018 01	27842	32129	DTUSAT	FENGYUN 1C DEB	5.263	5.263
28-Aug-2018 01 6	40020	31455	FENGYUN 1C DEB	BRITE TORONTO	14.580	14.58
28-Aug-2018 01 7			GEOS 3	DMSP 5D-2 F13 DEB	12.897	12.897
28-Aug-2018 01 /						
28-Aug-2018 01 8	39026	42767	KMS 3-2	CARTOSAT 2E	6.274	6.274
28-Aug-2018 01 28-Aug-2018 01 9	04419	31368	METEOR 1-5	FENGYUN 1C DEB	14.797	14.797
28-Aug-2018 01 10			FENGYUN 1C DEB	RESURS P1	14.982	14.982
28-Aug-2018 01						
28-Aug-2018 01 11			COSMOS 2237	NOAA 16 DEB	13.109	13.109
28-Aug-2018 01 12	42002	42024	FLOCK 3P 67	FLOCK 3P 71	0.003	0.003
28-Aug-2018 01 28-Aug-2018 01 13	43192	36461	COSMOS 2251 DEB	FENGMANIU-1	15.002	15.002
28-Aug-2018 01 14	21976	08139	THORAD DELTA 1 DEB	COSMOS 2187	12.204	12.204
28-Aug-2018 01 15	01814		FR 1	COSMOS 2251 DEB	11.089	11.089
28-Aug-2018 01 15 28-Aug-2018 01 16	25777		IRIDIUM 14	COSMOS 2251 DEB	6.445	6.445
28-Aug-2018 01						
28-Aug-2018 01 17			CZ-4 DEB	ALSAT 2A	14.621	14.621
28-Aug-2018 01 28-Aug-2018 01	03229	27255	COSMOS 220	PSLV DEB	14.858	14.858
28-Aug-2018 01 19	25338	37932	NOAA 15	CZ-2D R/B	9.036	9.036
28-Aug-2018 01 20	38038		FENGYUN 1C DEB	ZY 1	14.747	14.747
28-Aug-2018 01			FENGYUN 1C DEB	FLOCK 3P 78	15.112	15.112
28-Aug-2018 01 22			FENGYUN 1C DEB	AAUSAT3	7.551	7.551
28-Aug-2018 01 23	29479	37568	HINODE (SOLAR B)	CZ-4C DEB	14.794	14.794
28-Aug-2018 01 28-Aug-2018 01 24	00729	22574	SECOR 1B	SL-16 DEB	7.402	7.402
28-Aug-2018 01 25	30774	27741	SL-3 DEB	OE (NEXTSAT)	14.080	14.08
28-Aug-2018 01 28-Aug-2018 01 26	43119	43122	FLOCK 3PP 3	FLOCK 3PP 4	0.001	0.0
28-Aug-2018 01 20 28-Aug-2018 01 27			COSMOS 864	SL-14 DEB	13.028	13.028
28-Aug-2018 01						
28-Aug-2018 01 28	37790	34725	COSMOS 2251 DEB	NIGERIASAT X	14.907	14.907
28-Aug-2018 01 29	35635	04651	THORAD AGENA D DEB	COSMOS 2454	14.668	14.668
28-Aug-2018 01 28-Aug-2018 01 30	23087	38129	COSMOS 2278	FENGYUN 1C DEB	14.471	14.471
28-Aug-2018 01 31			CZ-4B DEB	APRIZESAT 10	10.812	10.812
28-Aug-2018 01						
28-Aug-2018 01 32	12456	30771	METEOR 2-7	FENGYUN 1C DEB	14.855	14.855

D_Soc D_Scr

0.028 0.028

0.029 0.032

0.042 0.042

0.044 0.044 0.050 0.05

0.066 0.066

0.067 0.067

0.081 0.081

0.082 0.082

0.082 0.082

0.095 0.095

0.098 0.117

0.099 0.099

0.113 0.114

0.138 0.138

0.144 0.144 0.144 0.144

0.145 0.145

0.147 0.147

0.150 0.15

0.155 0.155

0.158 0.158

0.160 0.16

0.161 0.161

0.165 0.165

0.166 0.553

0.168 0.168

0.170 0.17

0.177 0.177

0.181 0.181

0.182 0.182

0.184 0.184

Satellite Orbital Conjunction **Reports Assessing Threatening Encounters in Space**

TCA Soc

SOCRATES

R Scr

TCA Scr

2018 Aug 30 21:43:52.841 2018-08-30 21:43:52 2

2018 Aug 31 03:33:30.673 2018-08-31 03:35:20 3

2018 Aug 31 19:38:58.646 2018-08-31 19:38:58 7 2018 Aug 26 19:38:56.580 2018-08-26 19:38:56 8

2018 Aug 30 16:09:35.406 2018-08-30 16:09:35 9

2018 Aug 31 21:51:23.936 2018-08-31 21:51:23 15

2018 Aug 27 16:30:54.852 2018-08-27 16:30:54 16 2018 Aug 30 01:32:09.644 2018-08-30 01:32:09 18

2018 Sep 01 02:18:30.611 2018-09-01 02:18:30 21 2018 Sep 01 11:39:16.052 2018-09-01 11:39:16 20

2018 Aug 30 15:12:30.313 2018-08-30 15:12:30 31

2018 Sep 01 03:46:17.920 2018-09-01 03:45:52 48

2018 Sep 02 06:02:22.150 2018-09-02 06:02:22 34

2018 Aug 27 05:21:47.648 2018-08-27 05:21:47 46

2018 Aug 29 10:08:26.548 2018-08-29 10:08:26 58

2018 Aug 31 07:20:14.734 2018-08-31 07:20:14 67

2018 Sep 01 07:00:30.231 2018-09-01 07:00:30 66

2018 Aug 27 09:58:10.574 2018-08-27 09:58:10 69

2018 Sep 01 12:32:52.558 2018-09-01 12:32:52 73

2018 Sep 02 00:38:36.097 2018-09-02 00:38:36 76

2018 Sep 01 23:10:37.532 2018-09-01 23:10:37 82

2018 Aug 27 15:53:11.958 2018-08-27 15:53:11 86

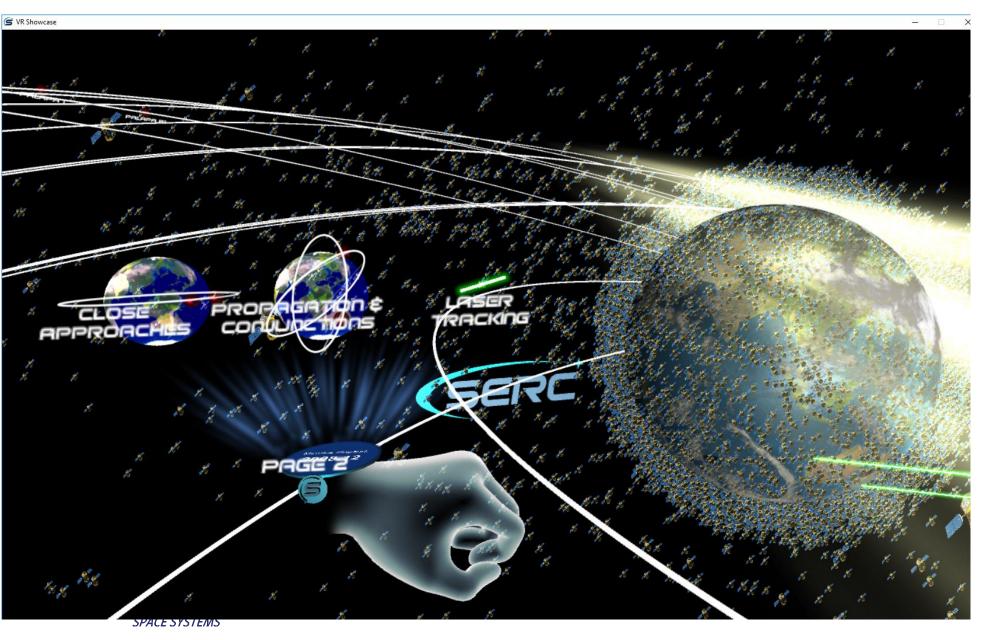
2018 Sep 01 00:13:09.573 2018-09-01 00:13:09 90

2018 Aug 26 14:32:48.970 2018-08-26 14:32:48 91 2018 Aug 27 07:38:27.752 2018-08-27 07:38:27 93

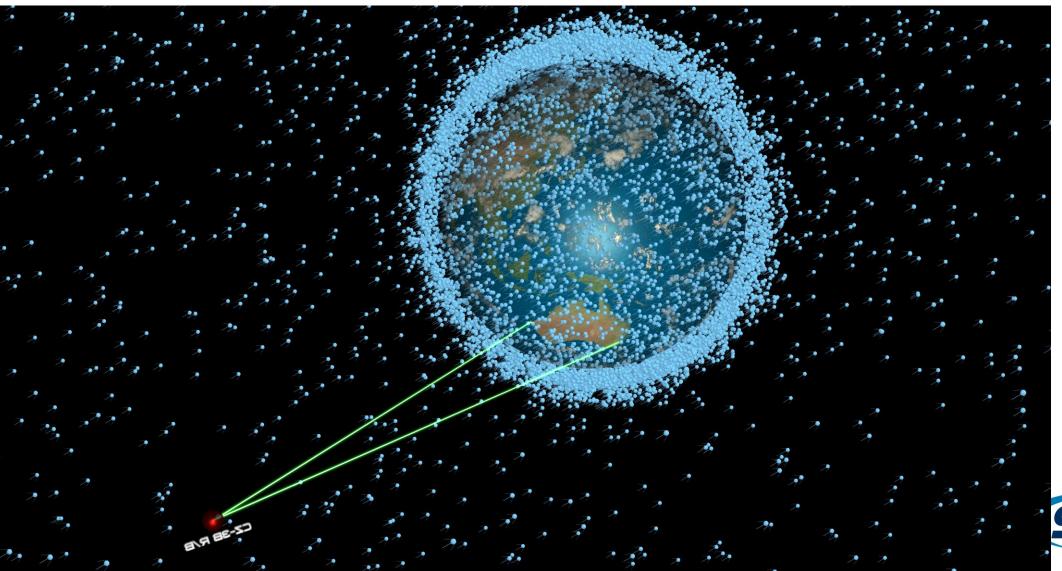
2018 Aug 28 22:56:55.310 2018-08-28 23:58:01 1141

2018 Aug 27 15:40:57.729 2018-08-27 15:40:57 95

2018 Aug 30 11:37:50.849 2018-08-30 11:37:50 99

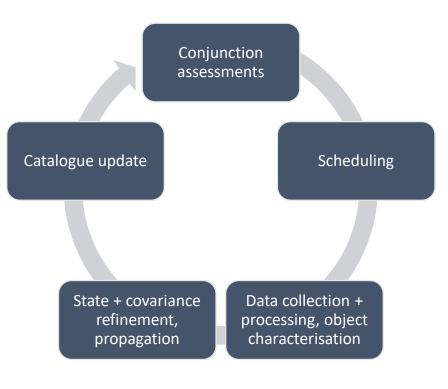

2018 Aug 29 05:43:59.898 2018-08-29 05:43:59 112

2018 Aug 27 15:59:38.779 2018-08-27 15:59:38 116


2018 Sep 01 08:17:34.286 2018-09-01 08:17:34 117

2018 Aug 30 03:03:24.016 2018-08-30 03:03:24 120

VR visualisation



Slide 31

Status

- Initial operational capability December 2018
 - Test runs with Optus
 - Conjunction data messages produced, assessed
- Full operational capability Feb-Apr 2019

James Bennett

EOS Space Systems

Email: jbennett@eosspacesystems.com

+

Slide 33

serc.org.au

info@serc.org.au
f facebook.com/serc.aus
@serc_aus

Australian Government

Department of Industry, Innovation and Science **Business** Cooperative Research Centres Program

Other RP3 research – PhD candidates

 Conservation of First Post-Newtonian Energy Integral (University of South Australia)

- Collision probability estimation for short encounter times using a three dimensional Generalized Gaussian Distribution (University of South Australia) - Hansani Thanippuli Kankanamalage
- Multivariate optimisation assessment strategies and their application to conjunction assessments (Australian National University) – Richard Samuel

