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Challenges: Orbit determination of space debris with laser tracking 'I'I.I'I'I

« Many objects, few stations — limited observation times
 Inaccurate predictions — no blind tracking possible
» Terminator (illumination) and weather (clouds) limitations

» Unfavourable observation geometries
W Sparse and ill-distributed tracking data

W Observability issues / overfitting

"> | arge estimation uncertainties
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Data fusion with TLE and DISCOS catalog data 'I'I.I'I'I

» Adds constraints for parts of the orbit that cannot be seen by tracking stations in close proximity
» May provide additional a-priori information (TLE orbits, mass and cross-section, ...)

« Can use a-priori orbit and uncertainties from improved TLEs (SP model fitted to TLE-derived
pseudo-observations)

"> Makes the solution parameters observable in case of unfavorable observation geometries
> Avoids overfitting, in particular regarding the ballistic coefficient in LEO

> Allows orbit determination even with single-pass data in the extreme case

What is the achievable orbit prediction uncertainty for single-pass debris laser ranging?
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Force model paramaters

* For very low objects (<500km) good results are obtained if the

ballistic coefficient BC = CD% is estimated using the rate of 005 F
change of the semi-major axis from historical TLEs:
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¢ Object properties (mass, shape, size) from DISCOS - ESA’s
database and information system characterising objects in space

* The ballistic coefficient and its uncertainty is derived from an o3 &
object’s mass, minimum/average/maximum cross-section and an &
estimated value for Cy
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TLE generation process

 Classical TLEs are generated by fitting . |
an analytical model to real 5 i
observations IS |
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TLE improvement via SP model fitting TI.ITI
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We fit a high-fidelity model to pseudo position-velocity observations from TLEs to obtain a physically more
realistic (and improved) orbit
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Statistics of TLE improvement post-fit residuals (RTN frame)
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Zenith-2 second stages (left: 22566, right: 22220), altitude ~ 800 km
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Validation using real leaser ranging data
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Uncertainty of improved TLEs T|.|T|

» Several approaches for TLE uncertainty estimation: TLE differencing, RMS after SP-model fitting, ...
— TLE differencing generally yields non-Gaussian and biased differences that grow polynomially in time

— OD post-fit residuals using TLEs as pseudo-observations neglect potential TLE biases

» Using an initial state from TLE improvement, we are interested in the uncertainty of this state and not of
uncertainty of the underlying TLEs

« We therefore compute differences of TLE improvement solutions from different epochs linked by orbit
propagation — these are the samples for covariance estimation
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Differences of improved TLEs at different epochs via propagation (1)
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Differences of improved TLEs at different epochs via propagation (2)
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Statistical model of differences of improved TLEs TN

« In a first-order Taylor series approximation the state-transition matrix ®(t, ;) maps deviations from the
reference orbit from one TLE epoch to the nexi:

AX(tg) = q)(tg, l4 )AX(H)

« The covariance P(t) is propagated linearly via P(t) = ®(t, t;)P(t)®(t2, )" + Q(b, t1). The additive
process noise matrix Q(f,t;) accounts for integrated force model errors during propagation.

« Consequently, a sample d; ; = x() — ¢(x(f); ;) is assumed to be drawn from the following distribution:

dji~ N (0,P(t)) + o(t;, i) Pid(t, )" + Q(t;, 1))
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= -

Correlation matrix of improved TLE T|.|T|

« Assuming P(t;)) = P(t;)) = P in the local orbital frame we maximize the likelihood function
L =Y logf(dj ;) using an analytical expression for Q({;, ;).

* In doing so, we use the correlation matrix as obtained from an individual least-squares adjustment for
TLE improvement and estimate only the variances using the differencing samples.

TLE improvement correlation matrix
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Results - Single-pass improvement of RTN uncertainties
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Results - Improved TLE vs. improved TLE + laser
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Results - Covariance ellipsoid vs. pass geometry 'I'I.I'I'I

» Ranging along the principle direction of covariance ellipsoid...

— provides maximum information regarding the orbit uncertainty

— maximizes the likelihood of hitting the target in bind tracking

 Potential approaches to quantify this:

— 1D: Based on projection of normalized view direction vector —~¥&% onto principal axis vector uq of the

_ N IVview |
covariance ellipsoid Ppos
Vview
(o u1) (1)
[V view
— 2D: Using area A, ey, Of covariance ellipse projected onto view direction and area Aq» of covariance

ellipse along the two principal axes

1 Aview

— 2
A1z @
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Results - Improved TLE vs. improved TLE + laser
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Results - Quality testing via filter consistency 'I'I.I'I'I

» Under the hypothesis that the filter is consistent, the normalized innovation squared at t = fx
ey (k) = v(K)TS(k)""v(k) = v(k)T (H(k)P(k|k — 1)H(K)T + R) ™' v(k) (3)

has a chi-squared distribution with n, degrees of freedom, where n; is the dimension of the
measurement, i.e. equal to one for range measurements.

« From N independent samples ¢,(k)’ one calculates the average
_ 1 .
Ev(k) = _ZSV(k)I (4)
Ni=

which is then tested with acceptance region determined based on the fact that Ng, (k) is chi-square
distributed with Nn, degrees of freedom.
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Results - Comparisons and filter consistency 'I'I.I'I'I

max. cov. range [% of pass] sig_max az/el [arcsec] rel. estimation consistency  rel. prediction consistency
22566 {(maximum elevation first / follow up pass: 22° /53°
Impr. TLE 1 29/10 - 1.00
Impr. TLE + laser 48 17/9 0.92 0.95
23088 (maximum elevation first / follow up pass: 30° / 58°
Impr. TLE 3 34 /12 - 1.00
Impr. TLE + laser 42 7/4 1.00 1.00

24298 (maximum elevation first / follow up pass: 44° [/ 27°)

Impr. TLE 1 12/5 - 0.73
Impr. TLE + laser 42 4/3 1.00 1.00

27386 (maximum elevation first / follow up pass: 24° [ 26°)

Impr. TLE 1 13/6 - 1.00
Impr. TLE + laser 56 6/5 1.00 0.80

5560 (maximum elevation first / follow up pass: 27° / 29°

Impr. TLE 100 14 /6 - 0.92
Impr. TLE + laser 57 4/2 0.88 1.00
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Summary

» Extended Kalman Filter framework for data fusion of laser ranges with TLEs
» Force model parameters from historical TLEs and the DISCOS database

» Developed an uncertainty estimation method for improved TLEs

» Tested improved TLEs & TLE-laser data fusion based on real data

« Significant reduction of uncertainty for telescope pointing in follow-up passes

 Highest chance of "hitting"target shifts from edges to middle of a pass

Outlook

» Use predicted uncertainties to derive search strategies for blind tracking

« Blind tracking campaign?
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