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Challenges: Orbit determination of space debris with laser tracking

• Many objects, few stations→ limited observation times

• Inaccurate predictions→ no blind tracking possible

• Terminator (illumination) and weather (clouds) limitations

• Unfavourable observation geometries

y Sparse and ill-distributed tracking data

y Observability issues / overfitting

y Large estimation uncertainties
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Data fusion with TLE and DISCOS catalog data

• Adds constraints for parts of the orbit that cannot be seen by tracking stations in close proximity

• May provide additional a-priori information (TLE orbits, mass and cross-section, ...)

• Can use a-priori orbit and uncertainties from improved TLEs (SP model fitted to TLE-derived
pseudo-observations)

y Makes the solution parameters observable in case of unfavorable observation geometries

y Avoids overfitting, in particular regarding the ballistic coefficient in LEO

y Allows orbit determination even with single-pass data in the extreme case

What is the achievable orbit prediction uncertainty for single-pass debris laser ranging?
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Force model paramaters

• For very low objects (<500km) good results are obtained if the
ballistic coefficient BC = CD

A
m is estimated using the rate of

change of the semi-major axis from historical TLEs:

da
dt

∣∣∣
drag

=
2a2v

µ
v̇drag ·ev

Together with v̇drag =−1
2ρBC |v−V|2 ·ev−V we obtain:

BC =−
µ∆at2

t1,drag

∑
t2
t=t1

a2
t vtρt‖vt −Vt‖2evt−Vt ·evt ∆t

• Object properties (mass, shape, size) from DISCOS - ESA’s
database and information system characterising objects in space

• The ballistic coefficient and its uncertainty is derived from an
object’s mass, minimum/average/maximum cross-section and an
estimated value for Cd
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TLE generation process

• Classical TLEs are generated by fitting
an analytical model to real
observations

• Since 2013 enhanced TLEs are
generated by fitting an analytical model
to orbit predictions computed using
high-fidelity models
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TLE improvement via SP model fitting
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We fit a high-fidelity model to pseudo position-velocity observations from TLEs to obtain a physically more
realistic (and improved) orbit
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Statistics of TLE improvement post-fit residuals (RTN frame)
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Validation using real leaser ranging data
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Uncertainty of improved TLEs

• Several approaches for TLE uncertainty estimation: TLE differencing, RMS after SP-model fitting, ...

− TLE differencing generally yields non-Gaussian and biased differences that grow polynomially in time

− OD post-fit residuals using TLEs as pseudo-observations neglect potential TLE biases

• Using an initial state from TLE improvement, we are interested in the uncertainty of this state and not of
uncertainty of the underlying TLEs

• We therefore compute differences of TLE improvement solutions from different epochs linked by orbit
propagation→ these are the samples for covariance estimation
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Differences of improved TLEs at different epochs via propagation (1)
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Differences of improved TLEs at different epochs via propagation (2)
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Statistical model of differences of improved TLEs

• In a first-order Taylor series approximation the state-transition matrix Φ(t2, t1) maps deviations from the
reference orbit from one TLE epoch to the next:

∆x(t2) = Φ(t2, t1)∆x(t1)

• The covariance P(t1) is propagated linearly via P(t2) = Φ(t2, t1)P(t1)Φ(t2, t1)T + Q(t2, t1). The additive
process noise matrix Q(t2, t1) accounts for integrated force model errors during propagation.

• Consequently, a sample dj,i = x(tj)−φ(x(ti); tj) is assumed to be drawn from the following distribution:

dj,i ∼ N
(
0,P(tj) + Φ(tj , ti)PiΦ(tj , ti)T + Q(tj , ti)

)
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Correlation matrix of improved TLE

• Assuming P(tj) = P(ti) = P in the local orbital frame we maximize the likelihood function
L = ∑ log f (dj,i) using an analytical expression for Q(tj , ti).

• In doing so, we use the correlation matrix as obtained from an individual least-squares adjustment for
TLE improvement and estimate only the variances using the differencing samples.

TLE improvement correlation matrix
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Results - Single-pass improvement of RTN uncertainties
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Results - Improved TLE vs. improved TLE + laser
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Results - Covariance ellipsoid vs. pass geometry

• Ranging along the principle direction of covariance ellipsoid...

− provides maximum information regarding the orbit uncertainty

− maximizes the likelihood of hitting the target in bind tracking

• Potential approaches to quantify this:

− 1D: Based on projection of normalized view direction vector vview
‖vview‖

onto principal axis vector u1 of the
covariance ellipsoid Ppos

〈 vview

‖vview‖
,u1〉 (1)

− 2D: Using area Aview of covariance ellipse projected onto view direction and area A12 of covariance
ellipse along the two principal axes

1− Aview

A12
(2)
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Results - Improved TLE vs. improved TLE + laser
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Results - Quality testing via filter consistency

• Under the hypothesis that the filter is consistent, the normalized innovation squared at t = tk

εν(k) = ν(k)T S(k)−1
ν(k) = ν(k)T (H(k)P(k |k −1)H(k)T + R

)−1
ν(k) (3)

has a chi-squared distribution with nz degrees of freedom, where nz is the dimension of the
measurement, i.e. equal to one for range measurements.

• From N independent samples εν(k)i one calculates the average

ε̄ν(k) =
1
N

N

∑
i=1

εν(k)i (4)

which is then tested with acceptance region determined based on the fact that N ε̄ν(k) is chi-square
distributed with Nnz degrees of freedom.
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Results - Comparisons and filter consistency
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Summary

• Extended Kalman Filter framework for data fusion of laser ranges with TLEs

• Force model parameters from historical TLEs and the DISCOS database

• Developed an uncertainty estimation method for improved TLEs

• Tested improved TLEs & TLE-laser data fusion based on real data

• Significant reduction of uncertainty for telescope pointing in follow-up passes

• Highest chance of "hitting"target shifts from edges to middle of a pass

Outlook

• Use predicted uncertainties to derive search strategies for blind tracking

• Blind tracking campaign?
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