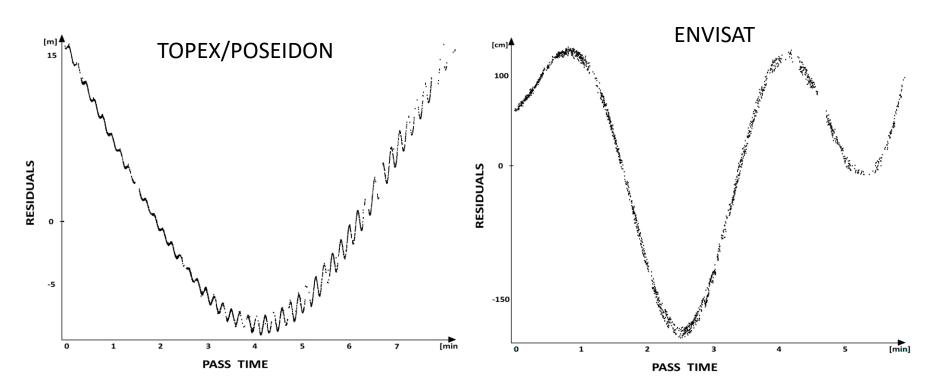

Mission characterization of LEO targets

T. Suchodolski, <u>P. Lejba</u>, P. Michałek, J. Bartoszak, S. Zapaśnik Space Research Centre of the Polish Academy of Sciences, ul. Drapałka 4, 62-035 Kórnik, Poland

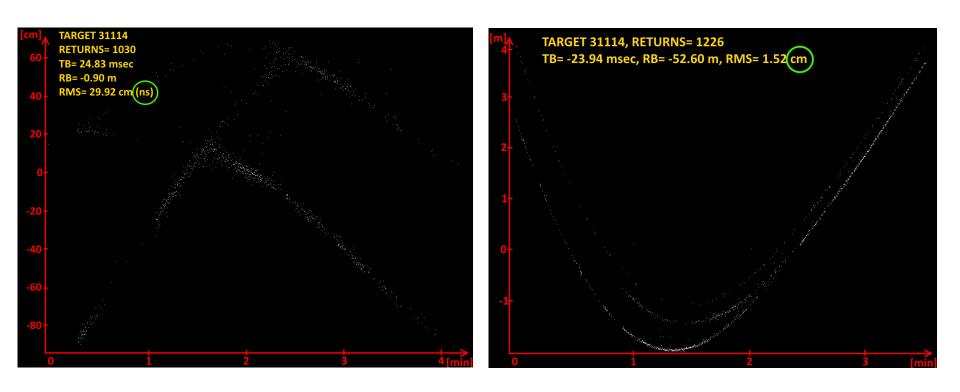
Dr. Eng. Tomasz Suchodolski suchodolski@cbk.poznan.pl

SD statistics in 2018– all passes

Our targets in 2018


ADEOS-2 ENVISAT ERS-1&2 JASON-1 OICETS SEASAT-1 TOPEX

R/B's: 28480 31114

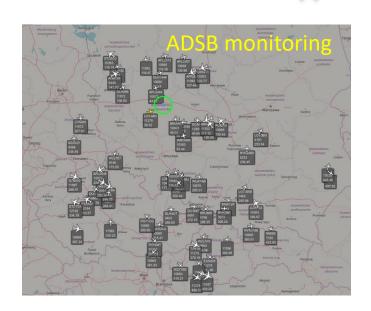

Till the end of October, 2018, BORL station has performed 456 passes of LEO space debris targets (5769 NP's) with the average RMS of the measurements from 2.5 cm to 45.1 cm

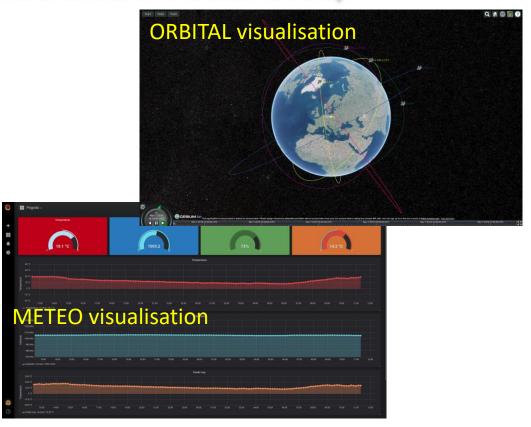
What you can get from 10Hz laser?

What you can get from 10Hz laser?

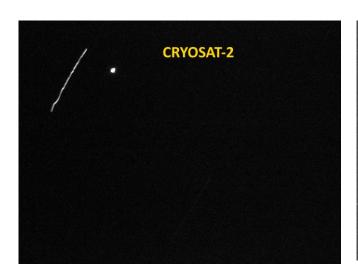
CBK SLR — SECOND SETUP

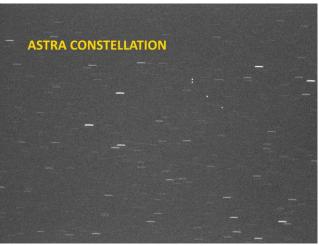
CBK SLR – second system




Parameter	CSLRB – CBK Borowiec SLR station (Cassegrain B setup) - HARDWARE
Mount	Alt-Azimuth, system resolution < 1 arcsec (Servo drive & PLC's)
Sensor telescope	Cassegrain 65 cm
Guiding telescope	RC 8"
Detector types	ASI1600MMC, main telescope, using for tests
	ASI174MMC, guiding telescope, using for tests
Laser	Continuum Surelite III (450 mJ/532 nm, 3-5 ns)
Time Interval Counter	Event timer
Detector	SPAD – developed by CBK, in progress
Beam divergence controlling	developed by CBK, in progress
Day/Night observations	Full automatic Iris & filter wheel changer, in progress
ADSB shutter module	Developed and done by CBK

CBK Borowiec SLR station (Cassegrain B setup) - SOFTWARE


- satellite/space debris predictions, done
- visualization in real-time and in simulating mode (tracking and Doppler parameters; eg. Az, El, distance, up & down RF link), done
- historical data analysis (SQL Data base), done
- real-time mode of tracking and laser data acquisition, in progress
- real-time and fast communication with altazimuth mount, done
- real-time process control (mount, peripherals, detector, etc.)
- data acquisition from event timer, in progress


Developped functionalities of the second setup

First optical passive tests – from LEO to GEO

EXPOSURE TIME

1 sec (CRYOSAT-2) 5 sec (ASTRA)

TELESCOPE

RC 8"

DETECTOR TYPE

ASI 1600MMC (MONO, COOLED CAMERA, SPECTRA RANGE 400-800 nm)

FOV

38'x29'

OBJECTIVES

- collection of pictures of satellites equipped with sollar arrays (with distinction on silicon arrays and gallium arsenide) and without these arrays
- the collected pictures will be used for data corellation and to determine the probability of the effectiveness of targets (satellites/space debris) distinguishing
- system callibration including correction of the distance between diffraction grating and camera
- specification of the parameters for the futured advanced spectra module placed on the main telescope (aperture 65 cm)
- missions characterization for needs of SST activity

Spectroscopy of LEO targets – preliminary stage

	JASON-3		
Changer	NASA, CNES,		
Sponsor	Eumetsat, NOAA		
Launch date	January 17, 2016		
COSPAR ID	1600201		
TECHNICAL PARAMETERS			
Dimensions	3.8 m x 10 m x 2m		
Mass [kg]	550		
	2 two deployable		
	solar arrays, each		
Sollar arrays	with four 1.5 by		
Sonar arrays	0.8-meter panels		
	covered with		
	silicon solar cells		
ORBITAL PARAMETERS			
Inclination	66°		
Eccentricity	0.001		
Perigee [km]	1336		
Period [min.]	112		

Spectroscopy of LEO targets – preliminary stage

PASS

17 OCTOBER 2018, 18:53:32 UTC

EXPOSURE TIME

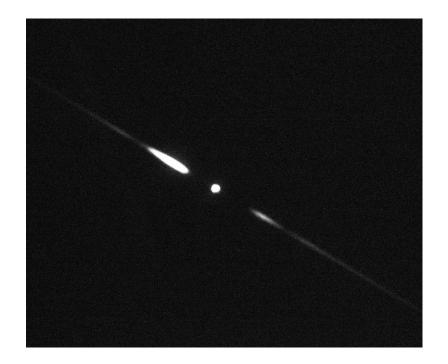
1 sec

WEATHER CONDITIONS

HIGH THIN CLOUDS

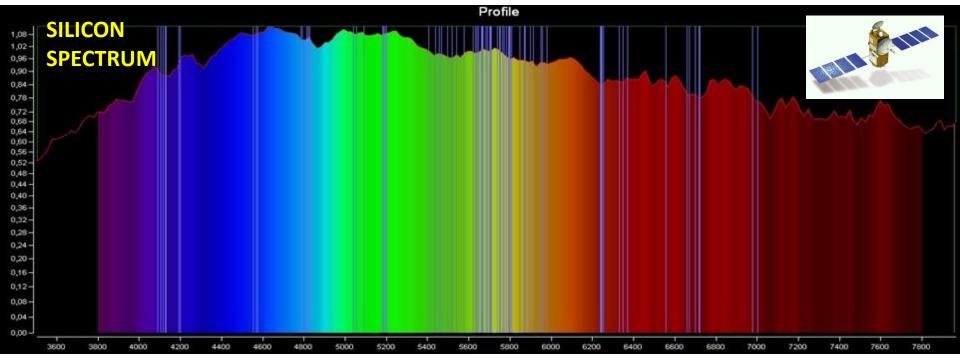
TELESCOPE

RC 8"

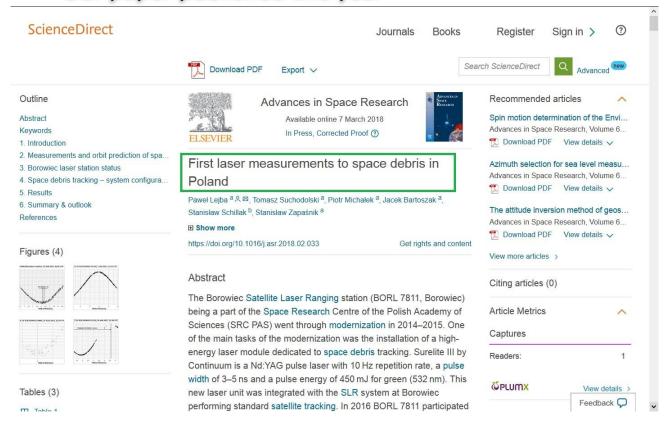

DIFFRACTION GRATING 100

DETECTOR TYPE

ASI 1600MMC (MONO, COOLED CAMERA, SPECTRA RANGE 400-800 nm)


FOV

38' x 29'



Spectroscopy of LEO targets – preliminary stage SPECTRUM of JASON-3

Real-time Spectroscopy software

Our paper published this year

SUMMARY

- the second CBK SLR setup should be fully operational including laser ranging, spectroscopy and fotometry before next laser workshop in China (keep fingers crossed ☺)
- FOR SURE, we need more good engineers!
- Some constraints/restricitions/limitations wrt the presented technique:

telescope pointing accuracy, camera/detector focus, the distance to the target, constant of diffraction grating, diffraction grating position relative to camera, target position/orientation wrt the station, weather conditions (atmospheric effects like seeing), others...

- to combine different techniques we can get much more informations about the target during one pass
- several new targets are being plan to tests (e.g. TOPEX, SEASAT, CHINESE and RUSSIAN BOOSTERS)
- when our spectroscopy approach will be confirmed by the results, then we invest into advanced spectra module
- there are our first results, any remarks, suggestions are welcomed ☺

Have sometimes some fun during your work!

