

Communications and Ranging Experiment using Laser terminal on satellite

Hiroo Kunimori^{*1}, Toshihiro Kubooka^{*1}, Morio Toyoshima^{*1}, Toshinori Kuwahara^{*2}, Tomio Hannah^{*2}

*1 National Institute of Information and Communications Technology (NICT) *2 Tohoku University, Japan

11/8/2018

-Contents

Background : Space-based Laser Comm.

Space-based Laser Comm. Program in the past and present (1)

	Asia	USA	Europe
Last	 1994: ETS-VI (NICT), GEO-GND, 0.8µm/0.5µm, IMDD, 1Mbps 2006: OICETS (JAXA/NICT), LEO-GEO,LEO-GND, 0.8µm, IMDD, 50Mbps 2011: HY-2 (China), LEO- GND, 1.5µm, IMDD, 504 Mbps- 2014: SOCRATES/ SOTA (NICT), LEO- GND),0.98/1.5µm, IMDD, 10Mbps 2017 Micius (China), QKD international demonstration. 	 1995: GOLD (NASA JPL), GEO-GND, 0.8/0.5μm, IMDD, 1Mbps 2001: GeoLITE (NRO), GEO-GND 2008: NFIRE (MDA), LEO- LEO, 1.06μm, homodyne BPSK, 5.6Gbps 2012 LRO (NASA) 532nm, PPM 300bps 2013: LLCD (NASA GSFC), Lunar-GND, 1.5μm, PPM, 622Mbps 2014: OPALS (NASA JPL), ISS-GND, 1.5μm, IMDD, 30~50Mbps 	 2001: SILEX (ESA), GEO- LEO, GEO-GND, GEO-Air, 0.8µm, IMDD, 50Mbps 2008: TerraSAR-X (DLR), LEO-LEO, LEO-GND, 1.06µm, homodyne BPSK, 5.6Gbps 2011: BTLS (Russia), ISS- GND, 1.55µm/0.85µm, IMDD, 125Mbps 2014: EDRS/Copernics (ESA), GEO-LEO, GEO-GND, 1.06µm, homodyne BPSK, ~1.8Gbps Sentinel-1B
11	/8/2018	21th IWLR. Canberra 2018	3

Background : Space-based Laser Comm.

Program in the past and present(2)

	Asia USA		Europe	
Present ~Near Future	 - 2018: RISESAT/ VSOTA (NICT), LEO-GND, 0.98/1.5μm, IMDD, ~1kbps - 2019ODRS (JAXA), GEO- GND, 1.5μm, DPSK, 1.8Gbps - 2021 HICALI (NICT) , 1.5μm, 10Gbps, DPSK 	 LCRD (NASA GSFC), GEO- LEO, GEO-GND, 1.5µm, DPSK/PPM, 2.8G/622Mbps DSOC (NASA JPL), Deep space-GND PPM, 	 EDRS-C, EDRS-D OSIRISv1-3 (DLR), LEO- GND, 1.5µm, IMDD, 20M- 10Gbps OPTEL-µ (RUAG), Deep space-GND, LEO-GND, 1.5µm, IMDD, 2Gbps OPTEL-D (ESA), Deep space-GND 	
	And more, There is gro service using LEO/ME	ram and		

http://icsos2017.ieee-icsos.org

Space Communication Data Rate v.s Satellite size

2010	"Hodoyoshi" Reliability/Cost balanced micro-sats program as RISESAT defined Sateliite No.2 start
2012	Collaborative Research Agreement between NICT and Tohoku Univ.
2013	VSOTA FM completed environment test . Lost opportunity of launch at over sea site.
2014	SOTA experiment start
2016	SOTA experiment end
2016 2017	Regain the Launch Opportunity by Epsilon Rocket #4 under JAXA Innovative Satellite Technology Demonstration Program
2018	Re-start project NICT FM start integration and Test END—END system level test software refinement Preparation of Ground station
1/8/2018	21th IWLR. Canberra 2018

(Very Small Optical Transmitter)

VSOTA-Collimator

LD Driver (VSOTA-E)

VSOTA SOTA Heritage

SOTA: Small Optical TrAnsponder (in orbit 2014~2016)

Electric Part

Optical on Gimbal Mechanics

11/8/2018

LD and driver board and Collimator ->VSOTA Compoonent

VSOT	A Specification	NICT 原北大学 TOHOKU UNIVERSITY
	VSOTA	SOTA
Mass	<1kg	6.2 kg
Power Consumtion	<10W	40W
Link distance	2000km max	←=
Wavelength (Divergence)	980nm(TX1), 1550nm(TX4) Div. (3.3mrad/ 1.2mrad)	980nm(TX1), 1550nm(TX4) Div. (200μrad) 800nm(TX2,3) 1064nm(RX)
Optical Power	980nm:540mW(max) 1550nm:80mW(max)	←=
偏光	980nm:Arbitrary 1550nm: Linear	←=
Modulation Format 11/8/2018	100kbps nominal (10kbps~6Mbps Variable) 21th IWLR, Canberra 201	1Mbps or 10Mbps 8 9

Microsatellite RISESAT

Satellite Size & Mass 50x50x50cm, 55kg <u>Orbit</u>:500-700km (nominal 500km), Sun-Synchronous LTDN nominal 9:30 Mission Instruments includes:

- High Precision Telescope (HPT)
- Dual-band Optical Transient Camera (DOTCam)
- Ocean Observation Camera (OOC)
- Space Radiation micro-Tracker (Timepix)
- □ Micro Monitor Camera (MMC)
- **D** Other engineering missions
- Very Small Optical Transmitter (VSOTA)

Pointing Accuracy:

0.1degree or 1.7mrad(3σ) : Requirement ∕ 0.04 degree or 0.7mrad (3σ) Goal

11/8/2018

Location of VSOTA Sub-Components and HPT (High Precision Telescope) in RISESAT

CCR on Nadir Panel

VSOTA-COL and CCR shown on the flight model of RISESAT

CubeDiameter: CA 28mm Uncoated Dihedral angle = 2.4 arcseconds +-0.4

Heritage of cancelled project (Astro-G) in 2013

2

11/8/2018

Specification of HPT

Parameter	Value
Observation Band	630 bands (420 nm – 1050 nm)
Ground resolution	5 m (at 700 km LEO)
Field of View	0.2°
Data update frequency	10 Hz
CCD Area	659 x 494 pixels
Diameter	100 mm
Focal Length	1000 mm

11/8/2018

Experiment scheme

Attitude Control System with combination to SLR and High Precision Telescope during Comm.

S.Fujita et al., IEEE_SICE (2017)

Link for Communication (VSOTA λ =980nm 100kbps, BER=10⁻⁵)

Items/ Size of Telescope→	1.5m	1m	35cm	20cm	unit
Power	270	=	=	=	mW
Wavelength	980	=	=	=	nm
Beam Divergence (Full width)	3.3	=	=	=	mrad
Optical Loss(TX))	-2	=	=	=	dB
Strehl ratio	0.4	=	=	=	dB
Pointing Loss	0.9	=	=	=	dB
Satellite Pointing Loss (3σ)	1.7	=	=	=	mrad
Space Loss	261	=	=	=	dB
Range(oneway)	900	=	=	=	km
Aperture Slze	1.5	1.0	0.35	0.2	mφ
Receive Gain	134	130	121	116	dB
Optical Loss(RX)	-2	=	=	=	dB
Atm.Turblulance Loss	-7	=	=	=	dB
Atm. Transmission	-4	=	=	=	dB
Receiving Power	-54.7	-58.2	-67.3	-72.2	dBm
Receiver Sensitivity	-60	-60	-70	-70	dB
1/8/2 <mark>Margin</mark>	21 5,3 W/LR	1.8	rra 2 6.7 8	-2.2	dB

Uplink for HPT and SLR Link budget v.s. Beam Divergence (λ =532nm Slant range=900km)

Mission Success Level

Mission Success Level	ltem	Objective
Minimum Success	M1	Demonstrate the capability of lightweight, compact optical communication on a scientific microsatellite.
	M2	Acquire data on the effect of atmospheric scintillation noise on the laser communications link.
Full Success	F1	Evaluate the HPT image of the SLR guide laser from ground
	F2	Evaluate the downlink beam divergence and ACU accuracy using the primary ground station and feed back to ACU.
Extra Success	E1	Evaluate the downlink beam divergence and ACU accuracy simultaneously using the primary ground station and mobile ground stations to consider the beam spread.
	E2	Be used as a reference source for verifying the adaptive optics of the optical ground stations intended for future high-throughput satellites, etc.
11/8/2018	E3	Be used as a reference source for verifying the superconducting nanowire single-photon detector (SSPD) to be used for a PPM- based deep space communication. 21th IWLR, Canberra 2018
		7

Current Status: Test Activities

VSOTA-COL additional Vibe. test (Feb 2018)

Integration of VSOTA on RISESAT (Jun. 2018)

VSOTA-E baking (May2018)

11/8/2018

VSOTA-COL Safety Cover set (Mar. 2018)

VSOTA-E LD replacement (Jun. 2018)

Configuration of End-to-end electrical and communication tests

21th IWLR, Canberra 2018

11/8/2018

End to END test :

Detector Sensitivity on Ground

Input level of APD detector and BER

APD detector (Hamamatsu C5460-1864) (Tx1 980nm, Data rate: 100kbps with HPF 2kHz)

11/8/2018

Conclusion

We described background and features of VSOTA, experimental plan and status.

□ It is in the final stage of the End to End test.

- It is not only communication but test laser source in sky, reference for Adaptive Optics light source, and it gives you to check beam Irradiance on the camera.
- In future work we will prepare for the equipments installation and operation software in ground stations, before launch when it will around the end of this year or the early next year and start the experiment after check out of satellite phase.

Thanks

11/8/2018

21th IWLR, Canberra 2018

2 2