

Sequential Processing of ILRS Observations – Experiences over the last 5 years

> David A. Vallado, James Woodburn and Tom Johnson

Paper IWLR 18-7.65 presented at the 21st International Workshop on Laser Ranging conference in Canberra, Australia, Nov 5-9, 2018 Copyright ©2018 by Analytical Graphics Inc. All rights reserved.

Outline

- International Laser Ranging Service (ILRS) Setup
- Satellite Characteristics
- Sensor system modeling
- Old and New Configuration Result comparisons
 - Res Ratios
 - Position Uncertainty
 - Filter Smoother Consistency (FSC)
- Comparisons
 - Old and new ephemerides
 - CPF ephemerides
 - TLE-derived ephemerides
- Conclusions

ILRS Network

ILRS Sensor Location Setup

- Active sensors
 - <u>https://ilrs.cddis.eosdis.nasa.gov/network/stations/index.html</u>
 - Active, engineering, inactive, and future stations
- Sensor locations
 - <u>ftp://cddis.nasa.gov/slr/products/resource/SLRF2014_POS+VEL_2030.0_180504.snx</u>
 - SLR 2014 frame
 - Instrument location (eccentricities)
 - <u>ftp://cddis.gsfc.nasa.gov/slr/slrocc/ecc_xyz.snx</u>
 - Historical sensors
 - <u>https://ilrs.cddis.eosdis.nasa.gov/network/stations/pre-ILRS_Stations/index.html</u>

New Sensors

Difference from previous setup

New S	ensors	0	ld Sensors	
STAL	7865	LVIL	1831	
OCTL	7040	MAIN	1863	
GF8Q	7125	MDVL	1870	
GEOL	7395	WUHL	7231	
HRTL	7503	KOGL	7328	
UROL	7816	DAEK	7359	Jun 15
KUN2	7819	CONL	7405	
STRK	7826	METL	7806	Nov 17
		KUNL	7820	Jun 14
		HLWL	7831	Jul 16
		RIYL	7832	

Orbit Determination

- Sequential Orbit Determination
 - Extended Kalman Filter / fixed interval smoother
 - Process noise
 - Stochastic sequences
 - Vasicek parameter modeling
 - Two time periods

Satellite Physical Characteristics

• Study satellites

	NORAD		Diameter	Area	Mass	Apogee	Perigee			Retroreflector COM Offset (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		
Satellite	#	ILRS #	(m)	(m ²)	(kg)	Alt (km)	Alt (km)	e	<i>i</i> (°)	Offset (m) 0.000 0.000 0. 0.000 0.000 0. 0.000 0.000 0. 0.000 0.000 0. 0.000 0.000 0.		
Larets	27944	304206	0.200	0.12570	23.280	691.0	675.0	0.001	98.00	0.000	0.000	0.000
Stella	22824	9306102	0.240	0.04524	48.000	806.0	795.0	0.001	98.90	0.000	0.000	0.000
STARLETTE	7646	7501001		0.04524	47.295	1107.0	805.0	0.021	49.80	0.000	0.000	0.000
LARES	38077	1200601	0.364	0.41620	386.800	1452.0	1436.0	0.001	69.50	0.000	0.000	0.000
Ajisai	16908	8606101	2.140	3.63000	685.000	1496.0	1479.0	0.001	50.00	0.000	0.000	0.000
LAGEOS 2	22195	9207002	0.600	0.28270	405.380	5952.0	5616.0	0.014	52.60	0.000	0.000	0.000
LAGEOS 1	8820	7603901	0.600	0.28270	406.965	5948.0	5838.0	0.004	109.90	0.000	0.000	0.000
Etalon 2	20026	8903903	1.294	1.31500	1415.000	19166.0	19078.0	0.002	65.30	0.000	0.000	0.000
Etalon 1	17951	8900103	1.294	1.31500	1415.000	19181.0	19070.0	0.002	64.20	0.000	0.000	0.000

• Additional information

- <u>http://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/index.html</u>
- <u>http://ilrs.gsfc.nasa.gov/missions/spacecraft_parameters/center_of_mass.html</u>

Satellite Force Model Configuration

			Fe	orce Models					
Parameter	Larets	Stella	STARLEITE	LARES	Ajisai	LAGEOS 2	LAGEOS 1	Etalon2	Etalon1
Gravity									
field size	70x70	70x70	70x70	70x70	70x70	70x70	70x70	40x40	40x40
Solid	yes	yes	yes	yes	yes	yes	yes	yes	yes
Time Dep	yes	yes	yes	yes	yes	yes	yes	yes	yes
Ocean	yes 4x0	yes 4x0	yes 4x0	yes 4x0	yes 4x4	yes 4x0	yes 4x4	yes 4x0	yes 4x0
Variational	8x8	8x8	8x8	12x12	8x8	6x2	6x2	12x12	12x12
Gen Rel	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
Atmospheric Drag	yes	yes	yes	yes	yes	no	no	no	no
Third Body	yes	yes	yes	yes	yes	yes	yes	yes	yes
SRP	yes	yes	yes	yes	yes	yes	yes	yes	yes
Albedo	no	no	no	no	no	no	no	no	no
Thermal	no	no	no	no	no	no	no	no	no
Process Noise									
$R (cm/s^2)$	0.0000000	0.0000000	0.0000000	0.0000000	0.0000067	0.0000000	0.0000000	0.0000000	0.0000083
$I(cm/s^2)$	0.0000833	0.0000083	0.0000083	0.0000833	0.0000000	0.0000002	0.0000002	0.0000000	0.0000000
$C (cm/s^2)$	0.0000333	0.0000167	0.0000167	0.0000167	0.0000167	0.0000058	0.0000058	0.0000003	0.0000083
time int (min)	1	2	2	1	1	1	1	1	1

Satellite Force Model Configuration

Parameter Settings													
Parameter	Larets	Stella	STARLETTE	LARES	Ajisai	LAGEOS 2	LAGEOS 1	Etalon2	Etalon1				
Mass (kg)	23.28	48.000	47.295	386.80	685.00	405.380	406.985	1415.00	1415.00				
Atmospheric Drag													
Model	Jacchia 71	NRLMSIS00E	NRLMSIS00E	Jacchia 71	Jacchia 71								
cd	3.06139	2.52738	2.5010	0.91782	2.6396								
area	0.0346	0.0452389	0.0452389	0.1450	3.6305								
LT Constant (BC	0.0045500	0.00238200	0.00239227	0.0003441	0.01348								
LT Sigma	0.05000	0.10000	0.10000	0.10000	0.10000								
LT Error Thresh	0.01000	0.01000	0.01000	0.01000	0.01000								
LT PNStep	0.00100	0.00100	0.00100	0.00100	0.00100								
ST Sigma	0.01500	0.10000	0.10000	0.10000	0.10000								
ST 1/2 life (min)	20	90	90	20	60								
Den 1/2 life	180	180	180	180	180								
Den Sigma Sc	1	1	1	1	1								
Use in Variation:	TRUE	TRUE	TRUE	TRUE	FALSE								
Addit PN	FALSE	FALSE	FALSE	FALSE	TRUE, .3/.3								
Solar Radiation Pressure													
area	0.035	0.0452389	0.0452389	0.145	3.6305	0.28274	0.28274	1.315	1.315				
LT Constant (cr)	1.036700	1.01000	1.00000	0.570000	1.01514	1.10680	1.12000	1.29000	1.25000				
LT Sigma	0.1000	0.0500	0.0500		0.1000	0.0200	0.0400	0.0500	0.0500				
LT Error Thresh	0.0050	0.0100	0.0100		0.0100	0.0100	0.0100	0.0100	0.0100				
LT PNStep	0.0050	0.0010	0.0010		0.0010	0.0010	0.0010	0.0010	0.0010				
ST Sigma	0.0200	0.1000	0.1000	0.0200	0.1000	0.0500	0.1000	0.1000	0.1000				
ST 1/2 life (min)	20	360	360	7200	360	3600	3600	720	720				
Use in Variation:	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE				
Addit PN	TRUE, 1/1	FALSE	FALSE	FALSE	TRUE, .3/.3	TRUE, .5/.5	TRUE, .5/.5	TRUE, .15/.15	TRUE, .15/.15				
Retroreflector													
LT Constant (m)	-0.430	-0.160	-0.160	-0.908	-1.966	-0.481	-0.481	-1.124	-1.124				
LT Sigma		0.005	0.005		0.0010	0.005	0.005	0.0020	0.0020				
LT Error Thresh		0.00050	0.00050		0.0010	0.000000001	0.00000001	0.000000001	0.000000001				
LT PNStep		0.00005	0.00005		0.0010	0.000000001	0.00000001	0.000000001	0.00000001				
ST Sigma	0.0500	0.005	0.005	0.0500	0.0100	0.050	0.050	0.0050	0.0050				
ST 1/2 life (min)	525600	525600	525600	525600	259200	525600	525600	259200	259200				
PhaseCenterX	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
PhaseCenterY	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
PhaseCenterZ	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				

9

Observation Numbers

• Each satellite receives varying amounts of data (Jun – Aug 2018)

Larets		Stella		STA	ARLETT	Ē	LARES Ajisai			LAGEOS 2		LAGEOS 1		Etalon1		Etalon2				
# obs Site	Site #	# obs Site	Site #	# obs	Site	Site #	# obs	Site	Site #	# obs	Site	Site #								
1,208 ZIML	7810	1,948 YARL	7090	3,361	YARL	7090	3,695	ZIML	7810	4,528 YARL	7090	2,823 ZIML	7810	3,397 ZIML	7810	448 MATM	7941	481	YARL	7090
1,122 YARL	7090	1,787 ZIML	7810	2,821	ZIML	7810	2,283	YARL	7090	3,064 ZIML	7810	2,323 YARL	7090	2,536 YARL	7090	431 YARL	7090	305	MATM	7941
706 STL3	7825	1,146 STL3	7825	2,105	STL3	7825	1,895	HERL	7840	2,833 HARL	7501	1,921 MATM	7941	1,974 HERL	7840	199 WETL	8834	174	HARL	7501
660 GODL	7105	839 HARL	7501	1,855	MATM	7941	1,721	GRZL	7839	2,737 STL3	7825	1,543 HARL	7501	1,809 MATM	7941	179 HERL	7840	163	WETL	8834
538 GRZL	7839	684 GODL	7105	1,423	HARL	7501	1,547	POT3	7841	2,083 GRZL	7839	1,285 HERL	7840	1,251 HARL	7501	138 ZIML	7810	102	HERL	7840
476 HARL	7501	617 AREL	7403	1,416	GODL	7105	1,441	SOSW	7827	2,038 AREL	7403	1,046 GODL	7105	955 STL3	7825	109 GODL	7105	92	ZIML	7810
452 POT3	7841	497 GRZL	7839	1,376	GRZL	7839	1,381	MATM	7941	2,005 MONL	7110	922 STL3	7825	913 POT3	7841	91 HARL	7501	56	SOSW	7827
417 HERL	7840	487 MATM	7941	1,239	WETL	8834	1,176	HARL	7501	1,836 GODL	7105	662 WETL	8834	867 SISL	7838	87 SHA2	7821	33 '	THTL	7124
365 SIML	1873	483 WETL	8834	1,144	HERL	7840	1,171	GODL	7105	1,800 MATM	7941	600 SHA2	7821	805 GODL	7105	68 GRZL	7839	31	GRZL	7839
328 MATM	7941	369 POT3	7841	1,068	MONL	7110	1,066	STL3	7825	1,731 WETL	8834	458 SISL	7838	765 WETL	8834	63 SOSW	7827	25	SHA2	7821
320 CHAL	7237	325 HERL	7840	935	POT3	7841	821	WETL	8834	1,461 HERL	7840	424 HA4T	7119	733 SHA2	7821	45 CHAL	7237	24	STL3	7825
259 AREL	7403	318 CHAL	7237	839	CHAL	7237	810	SIML	1873	1,377 POT3	7841	394 GRZL	7839	576 GRZL	7839	36 BEIL	7249	14	KUN2	7819
224 WETL	8834	318 KTZL	1893	829	KTZL	1893	717	CHAL	7237	1,364 SISL	7838	376 CHAL	7237	539 MONL	7110	23 STL3	7825	11	GODL	7105
223 KTZL	1893	278 HA4T	7119	812	AREL	7403	639	MONL	7110	1,074 SHA2	7821	372 MONL	7110	527 HA4T	7119	21 SIML	1873	9	CHAL	7237
218 ALTL	1879	271 SIML	1873	698	SIML	1873	537	THTL	7124	985 KTZL	1893	310 THTL	7124	480 CHAL	7237	20 ALTL	1879	9	POT3	7841
218 HA4T	7119	253 HRTL	7503	662	SHA2	7821	463	SHA2	7821	893 CHAL	7237	307 BRAL	7407	458 THTL	7124	18 KUN2	7819	6	ALTL	1879
198 SISL	7838	242 SHA2	7821	535	SOSW	7827	461	HA4T	7119	851 HRTL	7503	287 POT3	7841	376 IRKL	1891	16 MDVS	1874	5	SIML	1873
177 HRTL	7503	230 SOSW	7827	518	HA4T	7119	446	BORL	7811	766 THTL	7124	243 SOSW	7827	346 GRSM	7845	15 MONL	7110	3	ARKL	1886
168 SHA2	7821	225 MONL	7110	509	SISL	7838	418	KTZL	1893	707 SOSW	7827	236 GRSM	7845	272 MDVS	1874	7 KOML	1868	3	BEIL	7249
142 SOSW	7827	191 SISL	7838	438	THTL	7124	355	SISL	7838	691 SIML	1873	211 SIML	1873	252 BEIL	7249	7 THTL	7124	3	IRKL	1891
141 BORL	7811	98 KUN2	7819	360	HRTL	7503	291	RIGL	1884	661 HA4T	7119	184 KTZL	1893	244 SOSW	7827	6 HRTL	7503	3	KOML	1868
135 RIGL	1884	81 IRKL	1891	336	BEIL	7249	253	ALTL	1879	541 BEIL	7249	180 BORL	7811	223 SIML	1873	6 IRKL	1891			
134 THTL	7124	71 BEIL	7249	219	GLSL	1824	232	BEIL	7249	362 KUN2	7819	179 BEIL	7249	212 BRAL	7407	6 POT3	7841			
125 MONL	7110	63 ZELL	1889	200	ZELL	1889	232	IRKL	1891	357 RIGL	1884	165 BAIL	1887	192 ALTL	1879	5 ARKL	1886			
92 BADL	1890	62 THTL	7124	180	BORL	7811	227	MDVS	1874	307 GLSL	1824	147 IRKL	1891	186 BAIL	1887	2 SEJL	7394			
72 KUN2	7819	48 SVEL	1888	179	KUN2	7819	225	AREL	7403	295 ZELL	1889	136 ALTL	1879	143 ARKL	1886					
58 SEJL	7394	27 SEJL	7394	122	SEJL	7394	204	BADL	1890	229 BORL	7811	135 MDVS	1874	135 KTZL	1893					
57 GLSL	1824	26 ARKL	1886	119	RIGL	1884	199	ZELL	1889	219 ARKL	1886	117 HRTL	7503	131 KUN2	7819					
56 BEIL	7249	9 BRAL	7407	116	ARKL	1886	186	ARKL	1886	207 IRKL	1891	98 AREL	7403	113 HRTL	7503					
53 KOML	1868	7 GRSM	7845	103	IRKL	1891	162	KUN2	7819	109 BRAL	7407	97 ZELL	1889	110 BORL	7811					
43 ZELL	1889	6 BORL	7811	54	MDVS	1874	145	HRTL	7503	108 SEJL	7394	89 ARKL	1886	88 KOML	1868					
28 SVEL	1888	6 RIGL	1884	43	BRAL	7407	112	KOML	1868	68 MDVS	1874	88 KUN2	7819	81 RIGL	1884					
20 IRKL	1891			28	SVEL	1888	98	GLSL	1824	52 SVEL	1888	74 SEJL	7394	72 AREL	7403					
16 BAIL	1887			21	MDOL	7080	89	SEJL	7394			55 KOML	1868	61 ZELL	1889					
10 BRAL	7407						69	GRSM	7845			55 SVEL	1888	42 SEJL	7394					
							63	SVEL	1888			31 RIGL	1884	37 BADL	1890					
							35	BRAL	7407			17 BADL	1890	13 SVEL	1888					
9459		12012		26663			25865			38339		18590		21914		2046		1552		

10

Original Configuration – Residual Ratios

Copyright ©2018 by Analytical Graphics Inc. All rights reserved.

Original Configuration - Covariance

Original without LARES

Original – Position Filter Smoother Consistency

(Target-Reference) Position Consistency Statistics

Copyright ©2018 by Analytical Graphics Inc. All rights reserved.

AGI

New Configuration

<u>CSS</u>

New Configuration

New without LARES

New – Position FSC

New – Position FSC – Old EOP

Comparison: Larets Old vs New

• Scale (1m max)

Comparison: Stella Old vs New

• Scale (1m max)

Comparison: Starlette Old vs New

• Scale (1m max)

Comparison: Lares Old vs New

• Different scale (10m max)

Comparison: Ajisai Old vs New

• Scale (1m max)

Comparison: Lageos II Old vs New

• Scale (1m max)

Comparison: Etalon-1 Old vs New

• Scale (1m max)

CPF file comparisons

AGI

- CPF files are a prediction, not an OD
 - Sometimes contain Maneuvers
- CPF files compared to new SLR processing
 - Comparisons in the meter range
 - Different centers produce different results?
- CPF files compared to Two-Line Element (TLE) sets
 - TLEs much less accurate, but very dense tracking produces reasonable results
 - Comparisons in the kilometer range

Comparison: LARES New vs CPF from HTS

• Scale (30 m max)

Comparison: LARES New vs CPF from SGF

• Scale (30 m max)

Comparison: LARES New vs TLE

• Scale (4 km max)

Comparison: Larets New vs TLE

• Scale (4 km max)

Conclusions

- Sequential OD using SLR Observations
 - Details to setup OD and initial calibration
 - Sensor system modeling
 - Satellite parameter modeling
- Changes from previous setup
 - New locations and sensor parameters
 - Etalon-1 un-modeled cross-track process noise
 - SEJL parameters to accept more observations
- Comparisons
 - Previous setup (sub meter)
 - CPF ephemerides (~10s meters)
 - TLE generated ephemerides (few kilometers)
 - Similarity of position uncertainty and independent comparisons
- Future
 - Understand LARES results better
 - Understand Prediction Centers processing better

Questions?

