

Microreflectors for Mars, Phobos/Deimos and Asteroids/Comets

Marco Muccino¹, G. Bianco², S. Casini¹, J. Chandler³, S. Dell'Agnello¹, G. Delle Monache¹,
M. Di Paolo Emilio¹, L. Ioppi¹, O. Luongo¹, M. Maiello¹, R. March¹, C. Mondaini¹, R. Mugnuolo²,
M. Petrassi¹, L. Porcelli¹, L. Salvatori¹, M. Tantalo¹, M. Tibuzzi¹, R. Vittori¹

¹ National Institute for Nuclear Physics – Frascati National Labs (INFN-LNF), via E. Fermi 40, Frascati (RM), 00044, Italy
 ² Italian Space Agency – Space Geodesy Center (ASI-CGS), Matera (MT), Italy
 ³ UC SanDiego, 9500 Gilman Drive, La Jolla, CA 92093-0021, USA

Scientific activities @ the SCF_Lab

- Lunar Laser Ranging (LLR) (See Luca Porcelli's talk on Thursday afternoon) MoonLIGHT (Moon Laser Instrumentation for General relativity High-accuracy Tests).
- Satellite Laser Ranging (SLR) (Chiara Mondaini's talk of Wednesday morning) Arrays of retroreflectors for: Galileo IOV (In Orbit Validation), IRNSS (Indian Regional Navigation Satellite System), LAGEOS, GRA (GNSS Retroreflector Array).

Microreflector arrays in the Solar System

- On the Moon: INRRI (INstrument for landing-Roving laser Retroreflector Investigations), to be observed by laser equipped lunar orbiters.
- On Mars: INRRI on ExoMars 2016 (ESA), LaRRI (Laser Retro-Reflector for InSight) on the InSight lander, landing on Mars on November 26, 2018 (NASA), LaRA (Laser Retro-reflector Array) on Mars 2020 Rover (NASA).
- On Phobos/Deimos: PANDORA (Phobos ANd DeimOs Retroreflector Array) onto Mars' moons to be observed from laser-equipped satellites orbiting around Mars.
- On Asteroids/Comets: COSPHERA (COmet/asteroid SPHErical Retroreflector Array) landed/dropped on asteroid or comet to support laser tracking by orbiters, laser altimetry capabilities (like Hera), or lasercomm payloads.

PEP (Planetary Ephemeris Program) & GR (General Relativity) tests

Developed at the Harvard-Smithsonian Center for Astrophysics (CfA), USA, by Shapiro, Reasenberg, Chandler since 1960s. Lunar/Martian positioning data to perform test of GR up to 1.5 AU

SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory)

- Specialized Optical Ground Support Equipment
- Optical tests: Far Field Diffraction Pattern, Fizeau interferometry
- Representative space environments for TRL (Technology Readiness Level) 6-7
- SCF (left) for laser ranging and altimetry & SCF-G (right) optimized for GNSS
- Two AM0 sun simulators, IR thermometry
- J. Adv. Space Res. 47 (2011) 822–842

On Mars: INRRI, LaRRI & LaRA

- Array: 8 silver/Al coated 12.7mm CCRs, physical edges to the center of a sphere;
- Frame: aluminium alloy;
- Weight and size: 25 g for 5cm of radius and 2cm of height.

Goals

- Laser-location of lander/rovers on Moon/Mars/asteroids/comets from orbiters;
- Global and local networks for Exploration, Planetary Science, Geodesy and test Fundamental Gravity.

INRRI

The 1st microretroreflector on Mars on the lander Schiaparelli of ExoMars 2016

"INRRI-EDM/2016: the first laser retroreflector on the surface of Mars", Dell'Agnello et al., Adv. Space Res. 59 (2017) 645-655

LaRRI

The 2nd microreflector on board InSight Mars Lander

Optical performance test, in-air & isothermal conditions

Paper 1: "LaRRI: Laser Retro-Reflector for InSight Mars Lander", Dell'Agnello et al., Space Res. Today 200 (2017)

LaRRI space qualifications (paper 1)

- Bakeout: T= (370±1)K = (96.85±1)°C for >48hr;
- Passed four TVT cycles: min/max \implies (363±1)K / (138±1)K = (89,85±1)°C / (-135.15±1)°C
- Passed dynamic loads qualification
- Passed Contamination Control requirements
- Passed Planetary Protection requirements (jointly with Mars 2020)
- Passed load-peel test of reflector glueing before/after TVT & dynamic loads
- Passed mass-loss check before/after TVT & dynamic loads

LaRRI Optical performance test (paper 2)

- Tests in atmospheric/thermal conditions similar to those on Mars surface (except for dust storms):
 - 1) In-air test without solar simulator, changing LaRRI's bulk temp over wide range;
 - 2) In-air test with solar simulator (in excess of solar constant at Mars).
- Measurements:
 - 1) IR reflector temperature and thermal relaxation time (non invasive mesurement);
 - 2) Full array optical response at varying laser angles incident on LaRRI.

Paper 2: performance test without Solar Simulator

LaRRI instrumented with heaters and temperature probes. Thermally decoupled through thermal blanket from an especially designed baseplate. No vacuum was pulled.

- LaRRI bulk temperature: 20–70°C in 10°C steps;
- Optical performances: 0°–30° laser incidence.

Optical response preserved within factor ~2 with respect to ILRS & altimetry standards

Paper 2: performance test with the Solar Simulator

Table 1: τ of LaRRI

 τ |s|

156

155

162

 $\sigma_{\tau}[s]$

9

12

Angle [°]

10

20

30

More representative/realistic condition than previous. Measurements (@solar constant higher by 50%):

- IR thermometry, thermal relaxation time τ (sec)
- Optical performance at varying incidence angles

Shape of laser return varies. Optical response preserved with an overall intensity unchanged at < 20% level with respect to the nominal

2500 3000

3500

2000

time(s)

1500

Marco Muccino (INFN-LNF) et al

1000

500

310

305

295

[emperature(K)

residuals

Paper 2: performance test with the Solar Simulator

Table 1: τ of LaRRI

 τ |s|

156

155

162

Angle [°]

10

20

30

More representative/realistic condition than previous. Measurements (@solar constant higher by 50%):

- IR thermometry, thermal relaxation time τ (sec)
- Optical performance at varying incidence angles

Shape of laser return varies. Optical response preserved with an overall intensity unchanged at < 20% level with respect to the nominal

2500 3000 3500

1000

2000

time(s)

1500

500

310

305

295

[emperature(K)

residuals

LaRA Mars 2020 Rover (NASA)

INRRI ExoMars 2020 Rover (ESA)

On Phobos/Deimos: PANDORA

- Array: 9 CCRs (d=33mm), optical design customized for Phobos/Deimos;
- Material: fused silica;
- Metal support body: Al 6000 series;
- CCR mounting elements: KEL-F PCTFE plastic;
- Total mass: < 1 kg.

4 CCRs for high VA	λ (35-60 μrad)	
DAO:	3x(1.8±0.5)''	
Material:	Suprasil 1	
Coating:	Silver	
5 CCRs for low-med	\leq	
DAO:	3x(0.0±0.5)"	
Material:	Suprasil 1	
Coating:	None	

General Relativity Test with INRRI, LaRRI, LaRA & PANDORA

- Estimate Mars center of mass like Selenocenter with LGN;
- Mars center of mass and focii of Phobos/Deimos orbits;
- PPN γ, \dot{G}/G , 1/r² law (Sun-Mars), PPN β (Sun-Mars-Jupiter) (see Phobos laser ranging: S. Turyshev et al, arxiv:1003.4961v2 and references therein);
- Assume a MGN (Mars Geophysical Networks) of microreflectors (non-ideal) with PEP at 1.5 AU:
 - → Phoenix (68N, 234E), Viking1 (22N, 50W), Viking 2 (48N, 258W), Curiosity (4S, 137E), Opportunity (2S, 354E);
- Assume data rate: 1 laser normal point (NP) every 7 Sols;
- Weather/operation limitations; visibility from orbiter like MRO is once/Sol;
- Accuracy: 10 cm-10 m (Mars ephemeris ~100-50 m);
- Earth-orbiter: radio ranging; future: laser à la LLCD or laser transponder experiments GGAO-MLA/MOLA.
 Orbiter-surface: laser ranging/altimetry

Timespan/NP Accuracy	Accuracy on β-1	Accuracy on γ-1	Accuracy on \dot{G}/G
10 years/10 m	1.7xE-04	7.2xE-04	3.8xE-14
10 years/1 m	3.7xE-05	1.6xE-05	1.4xE-14
10 years/10 cm	7.4xE-07	3.2xE-06	2.9xE-15
Best accuracy now	1.0xE-04 LLR (JPL,CfA-INFN)	2.3xE-05 Cassini (Bertotti et al.)	9.0xE-13 LLR (JPL,CfA-INFN)

On Comets/Asteroids: COSPHERA

- Microreflector array: 18 CCRs of the same kind of INRRI, LaRRI, and LaRA on a sphere of Aluminium.
- To be dropped/landed on NEOs, as in missions like the ESA candidate Hera.
- Supports laser ranging by orbiters, laser altimetry, or lasercomm payloads performing ToF(Time-of-Flight) laser ranging (like OPTEL-D foreseen for Hera, formerly the Asteroid Impact Mission, AIM)

Possible application:

Didymos double asteroid (1-2 AU). Didymoon is the small secondary.

Hera has onboard $\mu\text{Lidar},$ which a ToF laser altimeter

- Eccentricity: 0.384
- Inclination: 3.4 deg
- Geometric albedo: 0.147
- Diameter primary: 800 m
- Diameter secondary: 170 m
- Separation: 1100 m
- Orbital period secondary: 11.9 h
- Semi-major axis: 1.644 AU
- Orbital Period: 770.14 days

Conclusions and Outlooks

Mars space-qualified microreflector such as INRRI, LaRRI and LaRA will lead to:

- Mars Geophysical Networks (MGN)
- Accurate positioning of landing-roving
- Absolute mars-location of the rover site at end-of-life
- Lasercomm test & diagnostics.
- Atmospheric trace species detection by lidar on orbiter
- Lidar-based landing next to Mars 2020 for sample return

Phobos/Deimos microreflector together with INRRI, LaRRI and LaRA will lead to:

- Laser-ranging between Mars's moons and laser-equipped satellites orbing around Mars
- Enhanced tests of General Relativity at 1.5 AU

On Asteroids/Comets COSPHERA

- will be dropped/landed on NEOs, as in missions like the ESA candidate Hera.

– will supports laser ranging by orbiters, laser altimetry, performing ToF laser ranging (by the μ Lidar on board Hera)

Thank you!