Toward high-rate on-time mmaccurate SLR at Stafford, Virginia

¹Jake Griffiths, ¹C. Font, ¹C.I. Moore, ¹F. Santiago, ¹R. Smith, ¹A. DeRieux, ²J. Ghiorzi, ¹L. Thomas

¹Naval Research Laboratory, Washington, DC 20375 ²R&M Technologies

21st International Workshop on Laser Ranging – 5-9 November 2018 – Canberra, Australia

- Enable NRL to participate in ILRS and other Laser Time Transfer (LTT) experiments, including NASA's CHOMPTT and ESA's ACES/ELT
 - leverage COTs equipment and technological advances from ILRS to date
- ACES/ELT
 - launch to ISS: expected (2020?)
 - ultra-stable atomic (Cs fountain + H-maser) clock ensemble^{1,2,3}
 - microwave link¹⁰ for ACES primary time transfer mode
 - 532nm laser link¹² for optical timing experiments
 - gated detector: laser pulse on target within 100ns
- Objectives of optical link payload:
 - evaluate limits in comparing precision ground clocks via LTT utilizing ACES timescale
 - improve atmospheric propagation models by comparing refractive index to microwave propagation delay
 - optically derived precision orbits for ISS

Source: http://www.esa.int

Anderson et al., in press (Adv. Space Res.)

U.S. NAVAL RESEARCH LABORATORY NRL Enabling Technology (1/2)

Telescope: Brashear 1 meter telescope

- All reflective design
- F#: 89
- Focal plane: @12.640 m
- Slew rates:
 - 15 degrees/sec slew rate (elevation)
 - 25 degrees/sec slew rate (azimuth)
- Pointing accuracy: <2 arcsec RMS all sky

Laser: Lumentum PicoBlade

- Ultra-short pulses, passively stabilized
 - ~28 ps (532 nm)
 - ~34 ps (1064 nm)
 - Single-shot to 20 kHz capable
 - 82 MHz oscillator (syncs to high precision external clock)

λ = 532 nm PRF = 1.5 kHz, 1000 mm from exit window

Repetition rate (kHz)	Measured power (W)	Pulse Energy (µJ)
	λ = 532 nm	λ = 532 nm
20	5.85	292.6
10	4.57	457.0
5	3.14	627.0
3	2.04	680.8
2.5	1.73	691.6
2	1.39	693.5
1.5	1.04	693.5
1	0.90	717.8

U.S. NAVAL RESEARCH LABORATORY NRL Enabling Technology (2/3)

<u>Rx detector</u>: Compensated Single Photon Avalanche Detector (C-SPAD)

- Si APD
- 200 µm active area
- Quantum Efficiency: 40%
- AR coated for 532
- Accepts 12 mm diam beam
- FOV: 1 degree
- Active quenching circuit
 - Time walk compensation < ±10 ps

Optical train:

- Custom optical elements were designed at NRL for better and efficient coupling of the laser system into the telescope
- High quality optics (mirror, polarizers, lenses) were acquired for system efficiency

PESO Consultant Ltd.

U.S. NAVAL RESEARCH LABORATORY NRL Enabling Technology (3/3)

Detector gating: Graz Range Gate Generator

- medium Resolution Event Timer and range gate generator
- 5ns resolution in time stamping
- 500ps resolution programable range gate generator
- accurate enough for generating range gates, range residuals, and real time plots for displays

Event timing: New Picosecond Event Timer (NPET)

- supports 2kHz epoch timestamping
- <0.9ps timing jitter per channel
- <0.5ps timing drift per Kelvin
- <0.1ps/hour timing stability
- requires spectrally clean clock signal

PESO Consultant Ltd.

U.S. NAVAL RESEARCH LABORATORY

- High precision atomic frequency reference
 - Microsemi H-maser w/ LPN option
 - AOG used for steering to UTC
 - Dedicated SMF-28e+ host <-> LTT testbed
 - ~750m one-way
 - Microsemi 6511 (coarse time-of-day)
 - TWTFT over fiber with CHRONOS 6501
 - <20ns performance
 - Linear Photonics On-time PPS to LTT testbed
 - PPS time marker aligned to UTC(USNO)
 - 276ps (±<1ps) static offset Tx/Rx
 - Linear Photonics DiLink to LTT testbed
 - delivers H-maser 5MHz frequency reference
 - Uuncompensated for fiber delay variations
- Initial integration complete August, 2018
- Ongoing monitoring of signals at H-maser and LTT testbed

AOG-110 Auxiliary Output Generator

U.S. NAVAL RESEARCH LABORATORY TRANSferring Timing Signals to LTT Testbed

- over ~1500m roundtrip

U.S. NAVAL RESEARCH LABORATORY

U.S. Naval Research Laboratory

System Level Functional Diagram

U.S. NAVAL RESEARCH

New interlock (complete) and radar (late 2018)

Callout boxes indicate all components in the LHRAS

U.S. NAVAL RESEARCH LABORATORY NRL LTT Testbed Optical Layout

U.S. NAVAL RESEARCH NRL LTT Testbed Optical Layout

3

M14 L6

M10

M12 FI

Rx

M11

Transmitted beam

- Collimated from 1 mm to 12 mm diameter
- Optics for matching telescope F# w/ 100 µrad FW divergence
- Folding mirrors for fine alignment with telescope
- Polarizing optics to separate Tx signal from Rx signal
- Periscope insertion into telescope optics

Received beam

- Thin file polarizer splits return light into Rx arm path
- Collimated to 12 mm diameter
- Return photons directed and aligned onto Rx detector (C-SPAD)

Initial design for separating Tx and Rx optical beam by polarization components

Polarization components measured at detector position:

- 85% vertical
- 7% Horizontal

- Test Performed to the system:
 - Initial collimation: GOOD
 - Optical elements where tested at NRL to characterize their optical performance:
 Current loss: ~30% (will be improved by fixing collimation size)

Total expected loss: ~ 15 to 20% (transmitting)

- System alignment with telescope: **GOOD**
- Polarization states maintain through the system: GOOD
 92% linear polarization at the detector
- Receiving arm focusing efficiency: GOOD
- System backreflections: **OK**, except >1 nJ from telescope covers (sun avoidance)
- <u>Tests to be performed:</u>
 - Rx effective FOV
 - Collimation out of the telescope

At the telescope

Receiving arm test, using a 75 mm fl lens

5.3 mm from system focus

At system focus 21st IWLR Canberra, Australia | **15**

U.S. NAVAL Backscatter Suppression

- Optical Chopper Blade implemented to suppress on-axis backscatter
- Custom blade designed to maximize opening for Rx signal, and protecting detector while Tx w/ gate open
- Located at focal plane on Rx leg
- Custom design:

ABORATORY

- sync with laser fire while modifying blocking duty cycle
- 16% duty circle, blocks 16 µsecs while sync @ 1kHz,
- blades sized to block area of detector while adding enough buffer to keep protecting in case of signal jitter
- tested to sync up to 1.5 kHz
- Inner and outer ring made to maximize opening duty cycle

Custom optical chopper blade, designed and built at NRL

U.S. NAVAL RESEARCH SLR & LTT Analysis Tools

Step #1: Initial search

- Two-modes: ground calibration and satellite
- For each 10-min interval, i,
 - determine direction, α_i, that minimizes width of a high-resolution histogram and contains bin with maximal number of data points
 - select SLR measurements for residuals that fall within narrow band along direction α_{i}
 - thickness of the band is a function of system jitter and target signature

Step #2: Outlier rejection

- Iterative weighted least-squares of regression function to find signal photons
 - all data points are included
 - data found in Step 1 (cyan) used for initial weighting
 - subset of initial weighted data points remain (blue) after iterative fitting and outlier rejection
 - solution converges when no outliers remain
 - full-rate signal photons (magenta) are all remaining data points

U.S. NAVAL RESEARCH LABORATORY Ground Targets and New Local Tie Survey

- Completed in 2016
 by NOAA NGS
- Tie between ground ranging targets and NRL telescope realized via AXIS software (Geoscience Australia)

U.S. NAVAL CRESEARCH LABORATORY Ground Target Testing

onds from start of andcal sessio

delay [ps]: 114068.0 drift [ps/s]: -0.008

Compares to calculated nominal delay based on

- optical path length (zemax)
- measured cable delays
- electronic signal rise times

Validate stability (in prog)

- Aim to enable NRL participation in ILRS and other LTT experiments
 - initial effort engineering to design 532nm system, requirements driven by ACES/ELT
 - study potential new methods to characterize, monitor, compensate for system delays
 - evaluate limits of LTT technique
- Initial 532nm optical layout designed and integrated
 - will test polarization-based attenuation on Tx and Rx legs for controlling flux on C-SPAD
 - need to verify 100 µrad divergence
 - need to improve backscatter suppression for >1.5 kHz rates
- Initial integration of electronics and timing systems complete
 - finish testing s/w interfaces with laser, NPETs, and timing systems
 - develop technique for controlling laser fire time
- Developed a new tool for extracting full-rate signal photons
 - add simplified user interface for low-latency post-processing (and reanalysis)
 - verify accuracy of data products generated using the tools
- Calibration and validation
 - classical methods used for ongoing system checkout and characterization
 - interested to find/explore alternate methods

