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Abstract The post-Newtonian approximation for general relativity is widely adopted by the
geodesy and astronomy communities. It has been successfully exploited for the inclusion of
relativistic effects in practically all geodetic applications and techniques such as satellite/lunar
laser ranging and very long baseline interferometry. Presently, the levels of accuracy required
in geodetic techniques require that reference frames, planetary and satellite orbits and signal
propagation be treated within the post-Newtonian regime. For arbitrary scalar W and vector
gravitational potentials W/ (j = 1, 2, 3), we present a novel derivation of the energy associ-
ated with a test particle in the post-Newtonian regime. The integral so obtained appears not
to have been given previously in the literature and is deduced through algebraic manipulation
on seeking a Jacobi-like integral associated with the standard post-Newtonian equations of
motion. The new integral is independently verified through a variational formulation using
the post-Newtonian metric components and is subsequently verified by numerical integration
of the post-Newtonian equations of motion.
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© Springer Nature B.V. 2018

Abstract The first post-Newtonian approximation of gen-
eral relativity is used to account for the motion of solar
system bodies and near-Earth objects which are slow mov-
ing and produce weak gravitational fields. The n-body rel-
ativistic equations of motion are given by the Einstein-
Infeld-Hoffmann equations. For n = 2, we investigate the
associated dynamics of two-body systems in the first post-
Newtonian approximation. By direct integration of the asso-
ciated planar equations of motion, we deduce a new expres-
sion that characterises the orbit of test particles in the first
post-Newtonian regime generalising the well-known Binet
equation for Newtonian mechanics. The expression so ob-
tained does not appear to have been given in the literature
and is consistent with classical orbiting theory in the Newto-
nian limit. Further, the accuracy of the post-Newtonian Binet
equation is numerically verified by comparing secular vari-
ations of known expression with the full general relativistic
orbit equation.

Weinberg 1972). The field equations of GR are a sy
ten, non-linear, coupled partial differential equations
obtaining exact analytical solutions (Stephani et al. '
a notoriously formidable task. Notable solutions ar
by Schwarzschild (1916) and Kerr (1963) which
highly ideal gravitational systems for non-rotating,
cally symmetric and rotating, axially symmetric bla
respectfully.

As early as 1916, Einstein hypothesised (Einstei
1918) the existence of gravitational waves using :
field approximation (d’Inverno 1992; Misner et al
Weinberg 1972) of the field equations of gravity.
direct observation of gravitational waves was due to
alescence of a binary black hole system (Abbott et al
which was detected by the advanced laser interfe
gravitational-wave observatory collaboration (Abbc
2009; Harry 2010). More recently, a simultaneous ¢
tion of both gravitational waves (Abbott et al. 20
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Some background, relevant results & motivation
Academic background

* Applied mathematician (Dublin, Ireland).

e Completed honours year in General Relativity.

* Began PhD (University of South Australia) July 2016 and expect to finish early — mid July 2019.
* Member of Research program 3 for Space Environment Research Centre, Canberra.

* Primary interests in relativistic mechanics in the post-Newtonian approximation for general relativity.

Some published results relevant for talk
Energy Integral (O’Leary, Hill & Bennett, 2018)




Some background, relevant results & motivation

Using U/c? < 1, the exponential functions can be expanded using Taylors series approximation and produce
known and well established results, namely

Both results can be seen as a formal extension of the classical Newtonian conservation of energy to include PN
contributions.
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Some background, relevant results & motivation

Post- Newtonian Binet equation ( O’Leary & Hill, 2018)

Taylor series

— Full PN Binet equation.

Which orbit equation more closely resembles — Taylor Series PN Binet equation.
full non-linear GR?
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Non-linear orbit equation GR




Gravity Field determination

Taken some inspiration from

On the principles of satellite-based Gravity Field Determination with special focus on the Satellite Laser
Ranging technique (Forste , Kbnig , Bruinsma, Lemoine , Dahle , Reinquin and Flechtner) (IWLR 2016)

Gravity Field Analysis from the Satellite Missions CHAMP and GOCE (Martin K. Wermuth) (PhD thesis, Institut
fur Astronomische und Physikalische Geodasie)

Gravity: Newtonian, post-Newtonian, Relativistic (Poisson & Will, 2014)
Satellite Orbits: Models, Methods, Applications (Montenbruck, Gill, 2012)
International Centre for Global Earth Models (ICGEM) (Barthelmes & Kohler, 2016)

Definition of the functionals of the geopotential and their calculations from spherical harmonic models
(Barthelmes, 2013)

CHAMP gravity field recovery with energy balance approach: First results (Gerlach, Sneeuw, Visser, Svehla,
2003)

An application of Jacobi’s integral to the motion of an earth satellite (O’Keefe, 1957)
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Gravity Field determination — Potential theory
Two methods used for decomposition of the Earth gravitational potential given by:

* Spherical harmonic expansion.
* Symmetric trace-free tensors (not as common in classical literature. However, useful mathematical tool).

Spherical Harmonic decomposition |
Newtonian gravitational potential for arbitrary mass distribution 7 ¢ d#--X-----=>

/
U:G/ p(r) dgrl
v —r'|

Legendre polynomial generating function given by

1 —1/2

Py = [7“2 —Q(r-r')%—(T’)z} = %i (%)lPl (cos7y)
[=0

Introducing spherical polar coordinates and making use of the addition and Rodrigues formulae. We express
the potential in well known form according to

( ) Piy (30 8) [Cirm Jos (m) f Spbin (m))




Gravity Field determination — Potential theory
l

U= GTM g: Z (g)l Py, (sin ¢) os (mA) in (mA))

Represents an Earth gravity field model of maximum degree V. The accuracy depends on the determination of
the spherical harmonic coefficients highlighted in red.

Examples of different kinds of spherical harmonics

Zonal Tesseral Sectorial

[=8 m=20 =16, m =9 [ =8, m =28
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Gravity Field determination — Potential theory

The International Centre for Global Earth Models (ICGEM) (http://iccem.gfz-potsdam.de/home)
Collects and archives global gravity field models

168 Tongji-Grace02k

167

166

165

164

163

162

161

160

159

Provides reports introducing ideas such as spherical harmonic expansions and defining geopotential
functionals.

Web-based interactive visualisations for various gravity field models
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Gravity Field determination — Potential theory

The International Centre for Global Earth Models (ICGEM) (http://iccem.gfz-potsdam.de/home)

* Collects and archives global gravity field models

* Provides reports introducing ideas such as spherical harmonic expansions and defining geopotential
functionals.

 Web-based interactive visualisations for various gravity field models

ICGEM GFZ

Helmholtz Centre

— PoTs DAam

Nr| " Model Vear|Degree] _  Data | Referonces | Downioad | Calculate | Show | DOI

al, 2018

167 SGG-UGM-1 2018 2159 EGM2008, S(GOCE) Liang, W. et Calculate
al., 2018 &
(2017)
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2018
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2017

163 GO_CONS_GCF_2_SPW_R5 2017 330 S(GOCE) Gatti, A. et al, afc zip Calculate Show v
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Gravity F|eId determmatlon Potentlal theory

Andhaly EGH2008 - Ellipsoid 1 = id = 0,5° 500 (1 ) light = (11°,2

Geofd E_\NLOUD = Ellxpiu:m:l 1=2-720 grid = 0,5° 10,000 (1 E‘I:Il':",E-E":':‘ ight = (11°,23°,3,0) .
.
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Gravity Field determination — Potential theory

findhaly EGH2008 - Ellipsoid 1 = 2 - 720 grid = 0,5

Optical bench with
Fluxgate Magnetometers Star sensors
and Star Sensors

Accelerometer (inside the
spacecraft at center of mass)

Gerc
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Overhauser :
Magnetometer Digital Ion Driftmeter e
and Langmuir Probe S-Band Antenna




Gravity Field determination — Potential theory

Andhaly EGH2008 - Ellipsoid 1 = 2'- 720 grid = 0,5° 500 {120°760°) light = (11°,23°,3,0) .
L .

Geofd EGH2008 - Ellipsoid 1 = 2 - 720 grid = 0,5° 10,900 (120°./50°:' light = (11°,23°,3,0) .
.. .

[ -6 |
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Gravity Field determination — Potential theory

Andhaly EGH2008 - Ellipsoid 1 = 2'- 720 grid = 0,5° 500 {120°760°) light = (11°,23°,3,0) .
L .

Geofd EGM2008 - Ellipsoid 1 = 2 - 720 grid = 0,5° 10,900 {120%,60°) light = (11°,23°,3,0) .
.. .
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ESA Swarm mission for gravity field determination

Absolute Scalar Magnetometer Deployable boom Solar panels GPS antennas S-Band antenna

.

Startracker assembly Laser retroreflector

Optical bench Accelerometer (inside)

Vector Field Magnetometer Coarse Earth & Sun sensor S-Band antenna

(image copyright: ESA)

e Swarm missions consists of three identical satellites (A, B and
C) launched November 2013.

* On - board sensors include (but not limited to) an
accelerometer, GPS receiver and laser retro reflector.

* |nthe interim of missions such as GRACE, GOCE and CHAMP.
The swarm constellation provided an ample opportunity for
the geodetic community for continued gravity field
determination with a wealth of literature already dedicated

to such research. ~+
(GerC
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Energy balance approach for gravity field determination
The conservation of energy arises as a first integral of Newton’s second law of motion namely,

d?xt  OU
dt? ox*
where following multiplication by the velocity vector

dxt d?zt  dz* OU B

— Constant of the motion for a
dt dt? dt Ox* satellite in an inertial (non-
is immediately integrable to give accelerating) reference
frame subject to a
conservative field (work
done is independent of path
taken).




Energy balance approach for gravity field determination
The conservation of energy arises as a first integral of Newton’s second law of motion namely,

d?xt  OU
dt? ox*
where following multiplication by the velocity vector

dxt d?zt  dz* OU B

Constant of the motion for a

dt dt? dt Or? satellite in an inertial (non-
accelerating) reference

is immediately integrable to give

frame subject to a
conservative field (work
done is independent of path
taken).




Energy balance approach for gravity field determination

Surface and time varying accelerations (non-conservative)
which are measured by on-board accelerometers

Centrifugal potential

Potential for some
Reference ellipsoid

Disturbing potential signifying
perturbations/disturbances
from a given reference
ellipsoid

It is important to note that the formal transformation
from an inertial to a non-inertial or Earth-fixed frame
gives rise to both Coriolis and Euler accelerations

/(wxx")-f-dt /(wxr)-dr

respectively. The time-variability of the Earth’s rotation is
negligible and can be neglected and the velocity vector is
perpendicular to the Coriolis acceleration.




Post-Newtonian energy integral

The field equations of GR* are notoriously difficult to solve
e Tensorial form.
* System of 10 non-linear, coupled partial differential equations.
* Very few solutions can be used to model physically realisable
situations.
* Solutions that do exist exhibit very high degrees of symmetry.

G = K1),
G =Ry —9uR/2.

The gravitational field of the Earth is weak when compared with some of general relativity's more exotic
phenomenai.e. we are not describing gravitational physics at the event horizon of a black hole.

Objects move slow when compared with the speed of light e.g. orbital velocity of a GPS satellite is
approximately 4 km/s.

The metric tensor components can be thought of as a small perturbation from the flat Minkowski space of
special relativity.

A linearised form of the field equations called the Post-Newtonian (PN) approx. was developed for the
description of solar system dynamics and is coined “unreasonably effective”.

The Post-Newtonian approximation



Post-Newtonian energy integral

PN metric tensor components Christoffel symbols of the second kind

Newtonian contribution Schwarzschild contribution Lense-Thirring contribution



Post-Newtonian energy integral

By following a formally identical procedure we may derive the energy integral associated with the PN
approximation for GR. The equations of motion for a near-Earth object in the PN regime are given by

d? 1 | |

Multiplying the above expression by v/ yields

2 9 2 1 k J
i[” U+ U]_ [—3 2 AUy e dU° AU

dt dt dt
where it is clear that the final two terms cancel to give
d [v? 20U 3v? dU
a2 Ut -

which can be solved analytically to give

c2 c2

2 dt




Post-Newtonian energy integral

The energy constant is identified in the Newtonian limit by demanding we recover the classical law of

conservation of energy.
* Expanding the exponentials to PN order gives

In a completely analogous way to that of the Newtonian energy integral we are proposing using this form of

energy conservation for gravity field recovery.
This is to be done in conjunction with precise orbit information from on-board GPS receivers and
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accelerometers for ESA’s swarm mission.




Potential problem areas and complications before proceeding with analysis

 The derivation of post-Newtonian first integrals contain some ambiguities. Popular literature (Poisson & Will,
2014) states that these quantities are actually not unique and are provided modulo an arbitrary amount of

¢ ? (vz — 2U)2

Which is constant by virtue of Newtonian mechanics. A manuscript (O’Leary & Hill 2018b) is currently in
preparation which discusses this issue and what effect it may have on overall dynamics.

 The description of arbitrarily shaped bodies in the PN formalism is given by the so called Blanchet Damour
moments rather than the usual classical spherical harmonic decomposition. Again, this requires further
elucidation before proceeding.

Conclusion

The energy integral method outlined for gravity field recovery is over half a century old (O’Keefe, 1957).
However, such methods are only made possible with data provided by dedicated gravity field missions in
recent years. Relativity at the PN level is abundant in many areas of navigation, geodesy, definition of
reference frames, interplanetary missions and so on. Here we presented a potential method of generalising
well-known gravity field determination methods to include PN contributions.



