

中国科学院上海天文台天文地球动力学研究中心 Shanghai Astronomical Observatory, CAS

### Initial combination of our SLR weekly solutions with other Analysis Centers

Fan Shao<sup>1,2</sup>, Xiaoya Wang<sup>1,2</sup>

1.Shanghai Astronomical Observatory, Chinese Academy of Sciences, China
2. University of Chinese Academy of Sciences, Beijing 100049, China;
Email: fanshao@shao.ac.cn

21st International Workshop on Laser Ranging in Canberra, Australia, Nov 5





2 precision of our weekly solutions

3、Combination Of SINEX

4,

4 Conclusions and Future plans

## 1, SLR Post Tab1 SLR Post Processing strategy

| Measurement models   | Troposphere                  | Mendes mapping function and Mendes-Pavlis zenith delay model                         |                                                                        |  |
|----------------------|------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
|                      | Satellite center of mass     | station dependent in accordance with the official ILRS COM                           |                                                                        |  |
|                      | Geopotential                 | EGM2008, 100×100degree                                                               |                                                                        |  |
| Orbit Models         | Solid earth tides            | IERS 2010 Conventions model                                                          |                                                                        |  |
|                      | Ocean tides                  | FES2004                                                                              |                                                                        |  |
|                      | Ephemeris                    | JPL DE421                                                                            | Introducing a modified Eugen C Magne                                   |  |
|                      | Terrestrial                  | SLRF2014 (a priori station coordinates and station velocities)                       | (FCM) clustering algorithm into the determination of the weights of SL |  |
|                      | Tidal corrections            | IERS 2010 Conventions                                                                |                                                                        |  |
| Reference Frames     | Ocean loading                | FES2004                                                                              |                                                                        |  |
|                      | Earth Orientation Parameters | IERS 14 C04 a priori<br>definition: SLR monument (eccentricities subtracted) at mean | station observations.                                                  |  |
|                      |                              | epoch of each arc                                                                    |                                                                        |  |
|                      | Stations                     | a priori values: SLRF2014                                                            |                                                                        |  |
| Estimated Parameters |                              | a priori standard deviation: 1 m                                                     |                                                                        |  |
| Estimated Farameters |                              | definition: x-pole, y-pole, UT1-UTC and LOD                                          |                                                                        |  |
|                      |                              | epoch: at noon of each day                                                           |                                                                        |  |
|                      | EOP                          | frequency: daily                                                                     |                                                                        |  |
|                      |                              | a priori values: IERS 14 C04                                                         |                                                                        |  |
|                      |                              | a priori standard deviation: 20 masec, 2 msec                                        |                                                                        |  |
| Pango biasos         |                              | for some (non-core) stations                                                         |                                                                        |  |
| Range blases         | Range biases                 | a priori value: 0 m                                                                  |                                                                        |  |
|                      |                              | a priori standard deviation: 1m                                                      |                                                                        |  |

### 1、SLR Post Processing



#### Fig1 Lageos1 Post processing RMS

### Fig2 Lageos2 Post processing RMS

### 1, SLR Post Processing



### 2. precision of our weekly solutions



6

# 3. Combination of SINEX

Variance factors of each AC



#### Tab2 Mean variance factors of each ac (ILRSC here represents our combined solutions)

| Tab3 Mean sca | ling factors | of each ac |
|---------------|--------------|------------|
|---------------|--------------|------------|

| ILRSC         | ASI   | BKG   | DGFI  | ESA   | GFZ   | GRGS  | JCET  | NSGF  | SHAO  |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Mean          | 8.85  | 11.43 | 20.21 | 11.67 | 14.97 | 10.5  | 11.75 | 10.45 | 11.19 |
| Std deviation | 15.37 | 22.15 | 23.04 | 15.66 | 17.78 | 15.57 | 21.77 | 18.86 | 18.66 |
| ILRSB         | ASI   | BKG   | DGFI  | ESA   | GFZ   | GRGS  | JCET  | NSGF  | SHAO  |
| Mean          | 2.87  | 3.2   | 17.5  | 4.16  | 7.04  | 4.92  | 10.87 | 7.93  | *     |
| Std deviation | 15.9  | 4.2   | 75.74 | 2.3   | 4.21  | 4.46  | 21.45 | 10.05 | *     |

| ILRSA         | ASI  | BKG  | DGFI  | ESA   | GFZ   | GRGS  | JCET  | NSGF  |
|---------------|------|------|-------|-------|-------|-------|-------|-------|
| Mean          | 7.59 | 8.03 | 19.68 | 8.48  | 8.75  | 14.61 | 8.83  | 10.53 |
| Std deviation | 49.5 | 18.0 | 62.31 | 19.43 | 15.44 | 40.51 | 30.88 | 17.00 |

# 3. Combination of SINEX



Tab4 3-D WRMS of the core site coordinates residuals with respect to SLRF2014 (mm)

|      | SHAO  | ILRSA | ILRSB | ILRSC |
|------|-------|-------|-------|-------|
| Mean | 10.86 | 7.73  | 10.71 | 8.63  |
| Std  | 3.88  | 2.30  | 2.56  | 3.05  |

Fig8 3-D WRMS of the core site coordinates residuals with respect to SLRF2014



Tab5 EOP residuals with respect to C04 (mas, ms)

|      |      | SHAO  |      | ILRSA |      |       |  |
|------|------|-------|------|-------|------|-------|--|
|      | XP   | YP    | LOD  | XP    | YP   | LOD   |  |
| Mean | 0.11 | 0.08  | 0.01 | 0.09  | 0.04 | 0.005 |  |
| Std  | 0.21 | 0.17  | 0.06 | 0.14  | 0.11 | 0/02  |  |
|      | -    | ILRSB |      | ILRSC |      |       |  |
|      | XP   | YP    | LOD  | XP    | YP   | LOD   |  |
| Mean | *    | *     | *    | 0.09  | 0.05 | 0.008 |  |
|      | *    | *     | *    | 0.14  | 0.12 | 0.03  |  |

8

Fig9 EOP residuals with respect to C04

# 3. Combination of SINEX

ILRSC ILRSA

ILRSB



Fig10 The translation parameter with respect to SLRF2014



Tab6 The translation and scale parameter with respect to SLRF2014 (mm, ppb)

|      |       | IL   | RSA   |       |       | ILRSB |       |       |  |
|------|-------|------|-------|-------|-------|-------|-------|-------|--|
|      | ТΧ    | ΤY   | ΤZ    | scale | ТΧ    | ΤY    | ΤZ    | scale |  |
| Mean | 0.01  | 1.89 | -6.12 | 1.36  | 0.82  | 1.79  | -8.46 | 1.30  |  |
| Std  | 3.72  | 3.15 | 5.56  | 0.46  | 4.43  | 3.84  | 8.25  | 0.47  |  |
|      |       | SF   | IAO   |       | ILRSC |       |       |       |  |
|      | TX    | ΤY   | ΤZ    | scale | ТХ    | ΤY    | ΤZ    | scale |  |
| Mean | -1.90 | 1.65 | -0.03 | 1.13  | -0.84 | 1.25  | -0.83 | 0.86  |  |
| Std  | 3.40  | 3.76 | 6.66  | 0.51  | 3.49  | 3.36  | 5.44  | 0.44  |  |

Q

### **4.Conclusions and Future plans**

The precision of our SHAO weekly solutions can meet the needs of ILRS, the mean value of 3-D coordinate residuals w.r.t. SLRF2014 for all sites is 14.66mm, for core sites is 9.86mm, and the mean value of EOP residuals w.r.t. CO4 for XP is 0.11mas, for YP is 0.08mas and for LOD is 0.01ms.

The calculated variance factors show that our SHAO weekly solutions have a same precision with other ACs.

□ 3-D coordinate residuals w.r.t. SLRF2014 and EOP residuals w.r.t. CO4 of our combined product show a good consistency with ILRSA and ILRSB

□ The trend of our translation parameter TZ and scale Parameter w.r.t. SLRF2014 are different from ILRSA and ILRSB. Why?

### **4.Conclusions and Future plans**

Add satellite ETALON1 and ETALON2 to regenerate our SHAO weekly SINEX files and combined products.

Comparing our translation parameters with dynamic geocenter motion.

Comparing our scale parameters with the scale derived from VLBI.



中国科学院上海天文台天文地球动力学研究中心 Shanghai Astronomical Observatory, CAS

## Thank you for your attention!

### Email: fanshao@shao.ac.cn

21st International Workshop on Laser Ranging in Canberra, Australia, Nov 5