

Systematic error monitoring and modeling in ILRS data and products for ITRF2020

V. Luceri¹, M. Pirri¹, E. C. Pavlis², M. Kuzmicz-Cieslak², K. Evans² and G. Bianco³

2) GEST/UMBC – Baltimore, MD

3) Agenzia Spaziale Italiana, CGS - Matera

IWLR2018, Canberra, 5-9 November 2018

ILRS Activities to Control Systematic Errors

- Quality Control Board (QCB) addressing laser ranging data quality issues via monthly telecons
- Daily analysis for quality control (QC) of range and time biases
- Undergoing activities for an operational service to monitor the long-term performance of stations at the mm level
- Developing improved target signature models (CoM correction)
- Monitoring the station clock performance with T2L2 on Jason-2. Time bias has small but non-negligible effects on station positioning; its effect is transferred on station coordinates (east-west component)
- Improved data accuracy by replacement of time-interval counter units (TIU) with event timers (ET)

Station Systematic Error Modeling

- To date, the modeling of the systematic errors for the standard ILRS products is based on information from historical and engineering reports, site logs, communication with the stations and, if required, a direct estimation of the suspected errors
- A data handling file is available at the ILRS website and maintained by the Analysis Standing Committee (ASC)

1041	., Mai							new station		
t lis t wit	t o: h uj	f ma pdat	ndat es f	ory range bis from ILRS/AWG	ases to be app reprocessing	plied resu	on observation lts	(ILRS/AWG (Oct 2007)	
1873		mm	A	95:001:00000	00:001:00000	R	-270.00			
7080		mm	A	88:001:00000	89:349:00000	R	-40.00			
7080		mm	A	90:094:00000	93:168:00000	R	25.00	IRLS/AWO	3 14/04/04	
7080		mB	A	95:065:00000	96:026:00000	P	-2.10	source (CDDIS	
7080		mB	A	96:026:00000	96:116:00000	P	-10.30	source (CDDIS	
7080		mB	A	96:116:00000	96:130:00000	P	-9.70	source (CDDIS	
7109		mm	A	00:000:00000	88:347:00000	R	10.00	ILRS/AWO	G 09/05/06	
7109		mm	A	97:009:00000	97:018:00000	R	164.90	source (CDDIS	
7110		mm	A	84:001:00000	84:136:00000	R	30.00			
7110		mm	A	87:300:00000	88:025:00000	R	30.00			
7110		mm	A	96:240:00000	96:277:00000	R	163.60	source (CDDIS	
7122		mm	A	84:122:00000	87:074:00000	R	30.00			
7123		mm	A	87:195:00000	87:282:00000	R	-30.00	source (CDDIS	
7210		mm	A	83:001:00000	87:255:00000	R	25.00			
7210		mm	A	87:255:00000	94:021:00000	R	-37.00			

Station Systematic Error Modeling

- The ILRS ASC is going to adopt a new model for the range biases strongly motivated by the need to remove the VLBI-SLR scale difference
- The model will be obtained estimating R_B simultaneously with all other parameters
- A Pilot Project is currently ongoing with the data reanalysis:
 - Weekly estimation of coordinates, EOP and range biases R_B
 - Time frame: **1993-2018**
 - Data: LAGEOS , LAGEOS 2, ETALON1-2
 - Time series with separate range biases for LAGEOS, combined for ETALON
 - Combination of the time series estimated by the ILRS ACs
 - Computation of mean range biases over medium/long time scale

GRAZ: ILRSA time series for LAGEOS-2

Green line represents the actual bias value used in the analysis, as reported in the adopted data handling file 7839 --- mm A 83:001:00000 96:272:00000 R -22.00

Preliminary results

Target signature model errors

The estimated long-term biases for several stations pointed to CoM errors as one of the plausible sources of these errors

(pulse transmitted from ground station) +) Otsubo et al, 1999 (retroreflected totsubo et al, 1999) (retroreflected totsubo et al, 1999 (retroreflected totsubo et al, 1999 (retroreflected totsubo et al, 1999) (retroreflected totsubo et al, 1999 (retroreflected totsubo et al, 1999) (retroreflected totsubo et al, 1999

New models suggest errors as high as 6 mm

a 5 I	ngn as u			e	e Editing few, Level ti) (×σ)	Calib. St. error (mm)	LAGEOS St. error (mm)	LAGEOS CoM range (mm)	LAGEOS	
pad ID	Name	length (ps)	Detector	(single, few, multi)					ADOPTED (mm)	
1873	Simeiz	350	PMT	No CNTL	2.0	60	70	248-244	246	
1879	Altay	150	PMT	No CNTL	2.5	20	36	254-248	251	
1884	Riga	130	PMT	CNTLD s->m	2.0	10	15	252-248	250	
7080	McDonald	200	MCP	CNTLD s->m	3.0	8.5	13	250-248	249	
7090	Yaragadee	200	MCP	CNTLD f->m	3.0	4.5	10	250-248	249	
7105	Greenbelt	200	MCP	CNTLD f->m	3.0	5	10	250-248	249	
7110	Mon. Peak	200	MCP	CNTLD f->m	3.0	5	10	250-248	249	
7119	Haleakala	200	MCP	CNTLD f->m	3	4.5	10	250-248	249	
7124	Tahiti	200	MCP	CNTLD f->m	3.0	6	10	250-248	249	
7237	Changchung	200	CSPAD	CNTLD s->m	2.5	10	15	250-245	248	
7249	Beijing	200	CSPAD	No CNTL, m	2.5	8	15	255-247	251	

Impact on the ILRSA scale w.r.t. ITRF2014

Impact on the ILRSA TX w.r.t. ITRF2014

Impact on the ILRSA TY w.r.t. ITRF2014

Impact on the ILRSA TZ w.r.t. ITRF2014

Preliminary results with the new RB table

Preliminary results with the new RB table

Towards the operational phase

- Preliminary table of mean range biases available for all stations
- New satellite Center of Mass model to be soon delivered
- Full reanalysis to take into account the new satellite Center of Mass corrections
- Mean station systematic errors inserted into the ILRS data handling file
- Start of the operational service to routinely keep the table updated
- Use of the updated data handling file for all the official ILRS products, ITRF included

- Quality control of the ILRS data and products is our top priority
- Dedicated ASC activities to monitor system stability and systematics that will turn into an operational service
- The station systematic errors can explain ~1ppb in the VLBI-SLR scale difference
- Modeling is continuously improved to assure mm-accuracy (e. g. Time biases, satellite CoM correction)