

TU Wien Department of Geodesy and Geoinformation Research Area Höhere Geodäsie

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

VMF3o: Enhanced Tropospheric Mapping Functions for Optical Frequencies

Janina Boisits¹, Daniel Landskron¹, Krzysztof Sosnica², Mateusz Drozdzewski², Johannes Böhm¹

¹ TU Wien, Department of Geodesy and Geoinformation, Research Area Höhere Geodäsie, Vienna, Austria ² Wroclaw University of Environmental and Life Sciences, Institute of Geodesy and Geoinformatics, Wroclaw, Poland

21st International Workshop on Laser Ranging, 5 – 9 November 2018, Canberra, Australia

Outline

- 1. Developing VMF3o
- 2. Parameters of VMF3o
- 3. Testing and Validation
- 4. Test Results
- 5. Outlook

1. Developing VMF3o

- VMF3o = 'Vienna Mapping Functions 3 optical'
- adapted from VMF3
 - ightarrow well established MF for microwave techniques
- Coefficients a_h, b_h, c_h, and a_w, b_w, c_w
 estimated from ray-tracing analogously to VMF3
- Documentation
 - → RADIATE: Hofmeister, A. & Böhm, J. (2017)
 - → VMF3: Landskron, D. & Böhm, J. (2018)

RADIATE – new module for optical ray-tracing

• Refined piecewise-linear ray-tracing approach

Vertical interpolation levels				
Interval [km]	Increment	Data source		
0 – 2	10 m	ECMWF		
2 – 6	20 m	ECMWF		
6 - 16	50 m	ECMWF		
16 – 36	100 m	ECMWF		
36 - 84	500 m	ECMWF / U.S. SA, 1976		

$$N_h = N_{gaxs} \frac{T_d}{P_d} Z_d R_d \rho$$

$$N_{w} = N_{gws} \frac{\rho_{w}}{\rho_{ws}} - N_{gaxs} \frac{T_{d}}{P_{d}} \frac{Z_{d}}{Z} \frac{e}{T} \varepsilon$$

Mendes, V. & Pavlis, E. (2004)

Hofmeister, A. (2016)

21st International Workshop on Laser Ranging 5 – 9 November 2018, Canberra, Australia 1. Developing VMF30 4 / 14

RADIATE – test of different wavelengths

- Differences of mapping factors using different wavelengths within azimuthal variation
 - ightarrow wavelength fixed to 532 nm

	Waveleng	th 532 nm	Wavelength 1064 nm			
49.50° lat., 12.50° long., 01.01.2017 12:00:00 UTC						
ε [°]	MF _h	MF_{w}	MF _h	MF _w		
5	$10.154_{\pm 0.012}$	$10.864_{\pm 0.089}$	10.157 _{±0.012}	10.876 _{±0.089}		
7	7.660 _{±0.007}	$7.964_{\pm 0.041}$	7.661 _{±0.007}	7.969 _{±0.041}		
10	5.557 _{±0.004}	5.672 _{±0.019}	5.557 _{±0.004}	5.674 _{±0.019}		
15	3.802 _{±0.002}	$3.838_{\pm 0.008}$	3.802 _{±0.002}	3.838 _{±0.008}		
49.50° lat., 12.50° long., 01.07.2017 12:00:00 UTC						
ε [°]	MF _h	MF _w	MF _h	MF _w		
5	$10.131_{\pm 0.009}$	10.845 _{±0.146}	10.134 _{±0.009}	10.856 _{±0.146}		
7	7.649 _{±0.005}	7.957 _{±0.085}	7.650 _{±0.005}	7.962 _{±0.085}		
10	$5.552_{\pm 0.002}$	5.670 _{±0.044}	5.553 _{±0.002}	5.672 _{±0.044}		
15	$3.801_{\pm 0.001}$	3.837 _{±0.020}	$3.801_{\pm 0.001}$	$3.838_{\pm 0.020}$		

2. Parameters of VMF3o

- b_h , b_w , c_h , c_w estimated **once**
- *a_h*, *a_w* estimated **per epoch**

	a_h, a_w	b_h, b_w	с _h , с _w		
Resolution of ray-traced delays					
Temporal	6h	Monthly	Monthly		
Spatial	1°x1°	5°x5°	5°x5°		
Elevation	5°	5°,7°,10°,15°	5°,7°,10°,15°		
Availability of coefficients					
Resolution	1°x1° / 6h	SH (lat,lon,doy)	SH (lat,lon,doy)		

Time series of hydrostatic (red) and non-hydrostatic (blue) coefficients of VMF30 for the year 2017 at **49.50° lat., 12.50° long.**

a_h, a_w :	6h resolution in discrete grids		
D_h, D_w, C_h, C_w	spherical harmonics expanded up to degree/order		
	12/12 with annual and semi-annual signals		

3. Testing and Validation

- Test data
 - $-a_h, a_w$: VMF30 files
 - b_h, b_w, c_h, c_w : SH coefficients
 - Period: 2005
- Software
 - Bernese GNSS Software ver.5.3 dedicated for laser observation processing
- Parameter sets
 - 3 sets tested

- Satellites: LAGEOS-1, LAGEOS-2
- Resolution: 6h on 1°x1° grid

	a_h, a_w	b_h, b_w, c_h, c_w	zhd	zwd
MP	MP	MP	MP	MP
VMF3o	VMF3o	VMF3o	MP	MP
VMF3ow	VMF3o	VMF3o	MP	VMF3o

4. Test Results

• Comparing slant delays at station 7839 at 20° elevation angle

21st International Workshop on Laser Ranging 5 – 9 November 2018, Canberra, Australia

4. Test Results 8 / 14

Station Coordinates – MP vs. VMF3o

• Comparing station coordinate corrections from weekly solutions for station 7839

 \rightarrow solution with smaller corrections compared to a priori coordinate plotted in foreground

Station Coordinates – MP vs. VMF3o

• Comparing station coordinate corrections from weekly solutions for station 7839

ightarrow solution with smaller corrections compared to a priori coordinate plotted in foreground

21st International Workshop on Laser Ranging 5 – 9 November 2018, Canberra, Australia

4. Test Results 10 / 14

Station Coordinates – MP vs. VMF3ow

• Comparing station coordinate corrections from weekly solutions for station 7839

ightarrow solution with smaller corrections compared to a priori coordinate plotted in foreground

Station Coordinates – MP vs. VMF3ow

• Comparing station coordinate corrections from weekly solutions for station 7839

 \rightarrow solution with smaller corrections compared to a priori coordinate plotted in foreground

4. Test Results 12 / 14

Residual Analysis

Comparing mean values of absolute observation residuals per station

	MP – VMF3o	MP – VMF3ow		MP – VMF3o	MP – VMF3ow
1864	-0.009	-0.001	7810	-0.049	-0.105
1873	0.005	0.011	7811	0.002	0.007
1884	0.005	0.048	7824	0.011	-0.123
7080	-0.037	-0.006	7825	-0.046	-0.074
7090	-0.028	-0.065	7832	-0.044	0.021
7105	-0.013	0.001	7838	0.020	0.075
7110	0.012	0.005	7839	-0.005	0.007
7237	0.003	0.013	7840	-0.007	0.015
7249	0.006	0.071	7841	0.007	0.000
7405	-0.003	-0.012	7941	0.008	0.051
7501	-0.051	-0.015	8834	0.014	0.022

Station 7941

5. Outlook

- Ray-tracing directly at SLR stations
 → mitigating error sources
 → save computation time and disk space
- Further investigations of VMF3ow solution
- Investigations of the effect of applying horizontal gradients
- VMF3o files for 2017 at <u>vmf.geo.tuwien.ac.at/trop_products/SLR_prelim/</u>

 \rightarrow feel free to test data set!

Differences of **mean values of absolute observation residuals** plotted against **station height**

 \rightarrow grid interpolation and height extrapolation as major error sources

References

- Hofmeister, A. (2016). Determination of path delays in the atmosphere for geodetic VLBI by means of raytracing. *Ph.D. thesis, Department of Geodesy and Geoinformation, Faculty of Mathematics and Geoinformation, TU Wien*. <u>http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444</u>
- Hofmeister, A. & Böhm, J. (2017). Application of ray-traced tropospheric slant delays to geodetic VLBI analysis. *J Geod (2017) 91: 945*. <u>https://doi.org/10.1007/s00190-017-1000-7</u>
- Landskron, D. & Böhm, J. (2018). VMF3/GPT3: refined discrete and empirical troposphere mapping functions. J Geod (2018) 92: 349. <u>https://doi.org/10.1007/s00190-017-1066-2</u>
- Mendes, V. & Pavlis, E. (2004). High-accuracy zenith delay prediction at optical wavelengths. *Geophys. Res. Lett.* 31, L14602. <u>https://doi.org/10.1029/2004GL020308</u>
- Mendes, V., Prates, G., Pavlis, E., Pavlis D. & Langley, R. (2002). Improved mapping functions for atmospheric refraction correction in SLR. *Geophys. Res. Lett.* 29(10). <u>https://doi.org/10.1029/2001GL014394</u>

