Recent Progress of VGOS and its contribution to GGOS

Takahiro Wakasugi (Geospatial Information Authority of Japan)

November 5th, 2018 21st International Workshop on Laser Ranging

Geospatial Information Authority of Japan

IVS: International VLBI Service for Geodesy and Astrometry

- An international collaboration of organizations which operate or support International Geodetic/Astrometric VLBI
- Established in 1999
- 85 components supported by 43 institutions in 20 countries
- Providing TRF, CRF, EOP products as a service of IAG, IAU and WDS

国土地理院

VGOS: A New VLBI Observing System

- More accurate estimation of position and velocity
- Sparse observations (2 to 4 times per week)
- Time lag from observations to products

VGOS: VLBI Global Observing System

A new VLBI Observing System by IVS to contribute to GGOS

 $2003 \sim 2005$ General Concept by IVS WG3

 $2005 \sim 2009$

Technical Design by VLBI2010 Committee

2009~

Implementation by VGOS Project Executive Committee

Overview of VGOS

国土地理院

Goal of VGOS

- Accurate pos/vel determination of 1mm, 0.1mm/yr
- Continuous observation of 24/7/365
- Products available with low-latency

VGOS at GSI (Ishioka station)

Diameter	13.2 m
Slew rate	
Az	12 deg/sec
El	6 deg/sec
Optical system	Ring Focus
Frequency Range	
S/X-bands	2, 8 GHz
Broadband	3~14 GHz

VGOS at GSI (Ishioka station)

2014 Mar. Antenna Installation 2015 Feb. Test observation with S/X-bands 2016 Feb. Building Installation May **Regular observation with S/X** Aug.-Sep. VGOS Test 2017 Jan. UT1 observation Mar. Retirement of Tsukuba Nov.-Dec. VGOS Demo (CONT17) 2018 Jun.-Sep. VGOS Test (IVS, AOV, NICT)

- Biweekly VGOS test observations (+ Westford) coordinated by IVS
- Correlated at MIT Haystack
- Improvement of operation, establishment of correlation processes

Latest VGOS Station

Current Issues and Prospects

- Purpose of current VGOS test observations: Accumulating knowledge of full end-to-end operation
- Correlation is a bottleneck
 - ✓ Only Haystack can correlate VGOS data
 - Under establishment of correlation processes
 - ✓ (Sometimes) Unstable observing systems

Current Issues and Prospects

- Purpose of current VGOS test observations: Accumulating knowledge of full end-to-end operation
- Correlation is a bottleneck
 - ✓ Only Haystack can correlate VGOS data
 - Under establishment of correlation processes
 - ✓ (Sometimes) Unstable observing systems

- Sharing the know-how of correlation
 - Processing manual "Cookbook" is under preparation
 VCOS Correlation Workshap in May 2010 at Hayatack
 - ✓ VGOS Correlation Workshop in May 2019 at Haystack
- "Mixed Mode" observation

"Mixed mode" Observation

- VGOS stations (broadband) participate in Legacy (S/X-bands) observation
- Continuity of products is secured when transition of observing system from Legacy to VGOS
 - ✓ VGOS stations are integrated in current products
 - Improvement of current products
- Different correlation processes are necessary among Legacy-Legacy, Legacy-VGOS, VGOS-VGOS baselines
 - ✓ First international test was conducted in July
 - ✓ Data are being correlated at Haystack
 - ✓ Next test is planned in December (RD1810)

(Niell et al (2018) IVS-GM)

Current Issues and Prospects

- Continuous Observation
 - Observing plan for transition
 - ✓ "Dynamic Scheduling (at UTAS)"
- Low-latency products
 - ✓ Data transfer via high-speed network
 - ✓ Distributed Correlation, Cloud Correlation
 - ✓ Automation of correlation and analysis
- Expansion of Station Network
 - ✓ South America, Africa, Antarctica…

Summary

- IVS is implementing a new VLBI observing system "VGOS" to contribute to GGOS
- VGOS tests are performed biweekly with 7 stations
- VGOS network is expanding gradually $\rightarrow \sim 15$ by 2020, 20+ finally?
- Correlation is a current bottleneck
 - → Sharing knowledge, "Mixed mode" Observation
- Expansion of stations and correlators might advance VGOS development rapidly
- Next challenge is realization of continuous observation and low-latency products

Thank you for your kind attention.