

OT. Matsumoto, Y. Akiyama, T. Sakamoto, K. Akiyama, S. Kasho, S. Nakamura Space Tracking and Communications Center, JAXA

Email: akiyama.yuuki@jaxa.jp

1. Introduction

Goal: ① To develop a small and cost-effective laser ranging arrays (LRAs) for satellite laser ranging (SLR)
 ② To mount onto upper stages of a rocket that are disposed of without controlled re-entry

Outcome:

- ① Grasp of motion of space debris
 - Importance of motion grasp in the active debris removal (ADM)
 - No case where the motion of upper stages of a rocket is measured
 - Capability of SLR to measure target's rotational motion by kHz ranging
- 2 Improvement of accuracy and precision of orbit determination in re-entry prediction

Active debris removal using

The main propellant tank of the second

Increase of observational data

electrodynamic tethers (JAXA)

stage of a Delta 2 launch vehicle landed near Georgetown

2. Details of LRA

A) Overview of CCRs

□ The LRA consists of only seven corner cube reflectors (CCRs)

CCRs typically consist of three mirrors or reflective prism faces which reflects an incident light beam directly towards the source.

Specification of CCRs

No.	ltem	Specification
1	Material (CCR)	Fused Silica

B) Overview of body frame

CCRs are aligned into each holes of the body frame

Resin model of the body frame of developing LRA manufactured by a 3D printer (JAXA); 7 CCRs are aligned into each holes.

The drawing of the body frame

D-D(1:1)

2	Height [mm]	19.05
3	Diameter [mm]	25.40
4	Dihedral angle offset ["]	+1.0
5	Coating	Uncoated

There is a possibility that these specifications are modified.

C) Rocket interface

- The range in which the LRA responds to the laser pulse is ±45 degrees at the zenith angle
 - Six LRAs are necessary if covering all directions

Five LRAs are planned to be mounted onto upper stages of a rocket with screws

A part of the drawing of the body frame. Some information is erased.

D Specification of body frame

No.	ltem	Specification
1	Material (Body)	Aluminum
2	Material (contact portion b/w body and CCR)	Silicon rubber
3	Height [mm]	31
4	Diameter [mm]	110

Rocket interface of LRAs; is the LRA; another LRA is onto back-side of the rocket. There is a possibility that the interface is modified.

 \rightarrow complete!

3. Roadmap of development

- $\succ CAD model \rightarrow complete!$
- Resin model
- \succ Experimental model (EM) → finish until Dec. 2018
- ➢ Flight model (FM)
 → finish until Jan. 2019
- → Mount onto a H-IIA rocket → finish until Feb. 2019

5 Weight [g]

6

Angle b/w central axes of adjacent CCRs [deg]

30.0

Less than 300

There is a possibility that these specifications are modified.

4. Conclusion and future work

- ✓ JAXA is steadily developing small and cost-effective LRAs which is mounted onto upper stages of a rocket.
- ✓ LRA will be finally developed at approx. US\$3,500/piece.
- ✓ JAXA is aiming to standardize the installation of the developed LRA on the upper stage of a rocket (at least made in Japan).
- Selling developed LRAs or distributing design drawings are under consideration.

21st International Workshop on Laser Ranging, Canberra, Australia, Nov. 04-09, 2018