
Software Best Practices at Crustal Dynamics 
Data Information System (CDDIS): Steps to 

Consider Justine Woo (Justine.y.Woo@nasa.gov)

Sigma Space Corporation

Lanham, MD, USA 

Patrick Michael (Patrick.Michael@nasa.gov)

NASA Goddard Space Flight Center

Greenbelt, MD, USA

Carey Noll (Carey.Noll@nasa.gov)

NASA Goddard Space Flight Center

Greenbelt, MD, USA

Rebecca Limbacher (Rebecca.i.Limbacher@nasa.gov)

Science Systems and Applications, Inc.

Lanham, MD, USA 

The Crustal Dynamics Data Information System (CDDIS) has been incrementally transitioning to a new 

software system with the goals of increasing automation and quality control measures.  In doing so, 

software engineering best practices were identified and implemented alongside the new system to ensure 

the integrity and sustainability of the system.  Many of these best practices are applicable to different 

systems and this poster introduces them, how they have been implemented at CDDIS, the benefits CDDIS 

has reaped, and how they may be applicable throughout other science related systems.

Repository

• Used to backup code base and 

regression test

• Provides version control that has 

helped us track changes, locate errors 

quickly, and revert to previous working 

versions

• Option to consider: Allows for 

replication if open source

Regression Test

At CDDIS:

• An in-house solution was developed

• The tests check critical points required for 

correct completion and the outputs

Other Options:

• Most modern programming languages have 

packages that can be downloaded to support 

or enhance regression tests

• At it’s base the outputs should at least be 

checked

Error Database

• Errors are pushed to the DB from the 

Code Base if any are encountered 

during runtime

• Warnings for files are also listed 

allowing for provider issues to be 

monitored and communicated

• A must if anything runs of crontab

Error Database

Code Base

Repository -
GIT

Regression Test –
In-house Solution

Documentation - WIKI

Implementation and Benefits at CDDIS

Documentation

• Saved on a WIKI that tracks 

updates

• Accessible by everyone at CDDIS, 

especially useful when people go 

on leave

The commits shown above are a snapshot of 

the directory (and sub-directories under it) 

where changes were made to the code and 

committed to the repository.  A commit can be 

selected and the changes made from the 

previous commit can be seen program by 

program.

Above is a snapshot of 

some information that 

is saved to the CDDIS 

database error tables.  

The information in 

these tables are used to 

generate reports so that 

we can contact the Ops 

centers with any issues 

we encountered from 

files sent.

Encouraging Documentation Use: Brown-Bag Sessions

• CDDIS works to build familiarity with the documentation 

so that it is not a last resort for when an error occurs

• The CDDIS team meets and reviews new programs and 

their structure while going through the associated 

documentation.  Participants are encouraged to add their 

understanding to the documentation to ensure it’s clear.

• Additional Positive Effects:

o Allows for code review to catch mistakes, for 

suggestions to be made, or to extend capabilities

o Promotes team collaboration and support through 

various tasks

o Shifting of existing and distributing of new tasks does 

not require a steep learning curve

Definitions
• Code Base: the code/software package

• Regression Test: code created to verify 

changes made to the Code Base 

(enhancements, bug fixes) still performs 

correctly

• Repository: a storage location for the Code 

Base and Regression Testing Code so that 

it can be retrieved and installed on another 

computer; it also allows for version control

• Error Database: Database or tables in a 

database dedicated to recording 

bugs/issues; necessary if running items on 

crontab

Steps:
1) The code base is created and outputs are correct

2) Create regression tests; there are several ways to do this.  Most major languages have 

packages that you can download to aid you in this or it can be as simple as creating a key 

file with the outputs expected and checking the test results against the key file.

3) Once the code base and regression test are complete, save them to a repository (preferably 

on another system)

4) Create documentation on how to compile/build the code, the version of the compiler and 

OS, and the exact commands used to run the program

5) If the code is run on crontab, a database with error tables needs to be created so that any 

errors encountered are recorded and easy to access and find.

6) Whenever changes are made to the code base, the code needs to be tested through 

regression testing before being pushed to production and uploaded to the repository.  

Update the documentation as needed.

mailto:Justine.y.Woo@nasa.gov
mailto:Patrick.Michael@nasa.gov
mailto:Carey.Noll@nasa.gov
mailto:Rebecca.i.Limbacher@nasa.gov

