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Abstract:	
	
The	LAGEOS	satellites	use	a	1.5	inch	uncoated	cube	corner.	The	design	studies	done	for	LAGEOS	
in	the	early	1970s	showed	that	using	smaller	cubes	would	result	in	greater	accuracy	and	lower	
thermal	gradients.	The	design	goal	for	LAGEOS	was	5	millimeters.	Despite	the	problems	the	
simulations	showed	that	the	accuracy	goal	could	be	met	using	1.5	inch	cubes.	Using	smaller	
cubes	would	require	having	a	much	larger	number	of	cubes	to	obtain	the	necessary	cross	
section.	This	would	have	a	significant	cost	impact.	Since	the	design	goal	could	be	met	with	1.5	
inch	cubes	LAGEOS	used	the	1.5	inch	cubes	for	financial	reasons.	
	
The	recent	development	of	COTS	(Commercial	Off-The-Shelf)	cube	corners	has	eliminated	cost	
as	an	obstacle	to	using	smaller	cubes.	The	COTS	cubes	have	no	dihedral	angle	offset.	However,	
no	offset	is	needed	if	the	size	is	chosen	properly.	At	Lageos	altitude	a	1.0	inch	cube	with	no	
dihedral	angle	offset	maximizes	the	cross	section	on	the	first	diffraction	ring	of	an	uncoated	
cube.	
	
Testing	and	analysis	of	a	set	of	10	COTS	cubes	done	by	Ludwig	Grunwaldt	and	Reinhart	Neubert	
shows	good	optical	performance.	The	cubes	are	inexpensive	and	are	manufactured	in	bulk.	
Simulations	show	that	the	systematic	range	errors	on	the	order	of	a	half	millimeter	are	
possible,	at	least	in	principle.	Adjustments	to	accommodate	the	holding	and	ejection	system	
can	result	in	some	loss	of	uniformity	with	incidence	angle	on	the	satellite. 
 



 
1.	Basic	principles.	
	
The	return	from	a	retroreflector	depends	on	the	wavefront	exiting	the	cube	corner.	For	a	
perfect	reflector,	the	exiting	wavefront	is	flat	with	constant	phase	across	the	aperture.	The	far	
field	pattern	for	a	perfect	circular	retroreflector	is	the	well	known	Airy	pattern.	The	width	of	the	
Airy	pattern	is	proportional	to	the	wavelength	divided	by	the	diameter	of	the	cube	corner.	
	
The	far	field	pattern	is	shifted	by	velocity	aberration	given	by	2v/c	where	v	is	the	velocity	of	the	
satellite	and	c	is	the	speed	of	light.	In	order	to	get	a	return,	the	pattern	has	to	be	wide	enough	
to	account	for	velocity	aberration.	The	simplest	way	to	obtain	the	necessary	beam	spread	is	to	
adjust	the	size	to	get	the	proper	beam	spread.	
	
In	a	solid	uncoated	cube	corner,	there	are	three	primary	physical	effects	that	alter	the	phase	
front.	
	
1.	Phase	changes	due	to	total	internal	reflection	at	the	back	faces.	
2.	Dihedral	angle	offsets.	
3.	Changes	in	index	of	refraction	due	to	thermal	gradients.	
	
The	phase	changes	due	to	total	internal	reflection	results	in	6	lobes	around	the	central	peak	of	
the	diffraction	pattern.	The	size	of	the	cube	corner	can	be	adjusted	so	that	velocity	aberration	
puts	the	receiver	on	this	ring	of	6	spots	or	on	the	central	peak.	
	
Dihedral	angle	offsets	are	not	needed	and	create	a	complicated	diffraction	pattern.	In	
particular,	the	sum	of	the	phase	changes	due	to	total	internal	reflection	and	dihedral	angle	
offsets	creates	an	asymmetric	diffraction	pattern	when	linear	polarization	is	used.	There	will	
always	be	some	small	dihedral	angle	offsets	due	to	manufacturing	errors.	
	
The	effect	of	thermal	gradients	can	be	minimized	in	two	ways:	
	
1.	Keep	the	optical	path	length	as	short	as	possible	by	using	small	cube	corners.	
	
2.	Keep	the	cube	as	cold	as	possible	to	reduce	thermal	radiation	from	the	front	face.	The	cube	
corner	should	be	thermally	decoupled	from	the	core	by	using	a	floating	mount	to	reduce	
conduction,	and	a	low	emissivity	of	the	mounting	cavity	to	reduce	radiative	heating	of	the	cube	
corner.	
	
Keeping	the	cube	corner	cold	requires	adjusting	the	thermal	parameters	of	the	core	and	the	
cavity	to	minimize	the	temperature	of	the	cube	corner.	Section	7	gives	equations	for	doing	this. 
 



2.	Centroid	vs	incidence	angle 
 
Simulations	have	been	done	for	an	array	with	rings	of	cubes	separated	by	12	degrees	on	a	20.1	
cm	sphere.	The	array	geometry	is	given	in	the	table	below.	There	are	288	cubes.	
 

	Ring		 Latitude	 #	of	CCRs	
1	 90	 1	
2	 78	 6	
3	 66	 12	
4	 54	 18	
5	 42	 22	
6	 30	 26	
7	 18	 29	
8	 6	 30	
9	 -6	 30	

10	 -18	 29	
11	 -30	 26	
12	 -42	 22	
13	 -54	 18	
14	 -66	 12	
15	 -78	 6	
16	 -90	 1	

Centroid	vs	Colatitude	

 
Figure 2.1 
 
Statistics for the red line 
Minimum	 Maximum	 Max	-	Min	 Average	 Rms	
		0.1623	 	0.1657	 	0.0034	 	0.1642	 	0.0006	
Statistics for the black line 
  Phi minimum   Phi maximum max-min 
  17.6050   0.1640     2.4850   0.1645   0.0004 



 
3. Thermal problems. 
 
Thermal testing of 1.5 inch cubes shows significant thermal distortion of the diffraction 
pattern. Thermal distortion causes unmodeled changes in the range correction. The 
plots are full scale 110 µrad. 
 

Test of LARES- Prism No. 51 , (in cavity) 

          
20 deg C  150 deg C  150 deg C 

    deep space  sun simulator 
D.Spano, PHD , La Sapienza Univ. di Roma, 2012 

Figure 3.1 
	
4.	Polarization	asymmetry.	
	
In	an	uncoated	cube,	there	is	an	interaction	between	dihedral	angle	offsets	and	phase	changes	
due	to	total	internal	reflection.	This	results	in	an	asymmetrical	diffraction	pattern	if	linear	
polarization	is	used.	The	pattern	has	circular	symmetry	for	circular	polarization.	The	asymmetry	
can	be	virtually	eliminated	if	no	dihedral	angle	offset	is	used.	The	offset	of	1.25	arcsec	in	the	1.5	
inch	cubes	is	necessary	to	account	for	velocity	aberration.	If	1.0	inch	uncoated	cubes	are	used	
the	diffraction	pattern	is	wide	enough	to	account	for	velocity	aberration	without	the	need	for	a	
dihedral	angle	offset.	
	
Simulations	have	been	done	comparing	1.5	and	1.0	inch	uncoated	cubes.	The	first	design	uses	
204	1.5	inch	cubes	on	a	200	mm	radius	satellite.	The	second	design	uses	303	1.0	inch	cubes	on	
a	202	mm	radius	satellite.	The	range	correction	and	cross	section	matrices	are	irregular	at	a	
single	incidence	angle	on	the	satellite	for	both	circular	and	linear	polarization.	The	matrices	
have	been	averaged	over	2520	orientations	of	the	satellite.	When	this	is	done	a	circular	pattern	
shows	up	for	circular	polarization	and	an	asymmetric	pattern	for	linear	polarization	The	
magnitude	of	the	range	correction	is	different	for	the	two	designs	because	the	optical	path	
length	is	different	in	the	different	size	cubes	and	the	radius	of	the	satellite	is	slightly	different.	
The	scale	of	the	figures	below	is	-50	to	+50	µrad.	
	



	
Centroid	matrices	

	
1.5	inch	cubes	

		 		 	
								Circular	polarization	 	 	 	 Linear	polarization	
																Figure	4.1																																																																	Figure	4.2	
	

1.0	inch	cubes	

		 		 	
								Circular	polarization	 	 	 	 Linear	polarization	
																	Figure	4.3																																																																		Figure	4.4	
	
Circular	polarization	produces	a	circular	pattern	for	both	size	cubes.	The	pattern	is	not	
completely	circular	for	the	1.5	inch	cubes	even	with	averaging	over	many	incidence	angles.	The	
pattern	for	1.0	inch	cubes	has	good	circular	symmetry.	
	
Linear	polarization	produces	an	asymmetric	pattern	for	the	1.5	inch	cubes	with	a	dihedral	angle	
offset	of	1.25	arcsec.	For	the	1.0	inch	cubes	with	no	dihedral	angle	offset	the	pattern	is	nearly	
circular	with	linear	polarization.	There	is	a	very	small	remaining	asymmetry	that	is	less	than	the	
accuracy	goal	for	the	satellite.	The	scale	is	-50	to	+50	µrad.	
	



	
Cross	section	matrices	

	
1.5	inch	cube	

	

		 		 	
								Circular	polarization	 	 	 	 Linear	polarization	
														Figure	4.5																																																																				Figure	4.6	
	

1.0 inch	cube	

		 		 	
								Circular	polarization	 	 	 	 Linear	polarization	
																Figure	4.7																																																																	Figure	4.8	
	
The	pattern	with	linear	polarization	is	asymmetric	for	the	1.5	inch	cubes	but	symmetric	for	the	
1.0	inch	cubes.	
	
The	maximum	and	minimum	values	of	the	centroid	have	been	computed	around	circles	of	
increasing	radius	in	the	far	field.	The	asymmetry	has	been	computed	as	the	maximum	minus	
the	minimum.	This	difference	has	been	plotted	vs	the	magnitude	of	the	velocity	aberration.	
	
	
	
	
	
	
	
	



Comparison	of	the	asymmetry	in	the	centroid	

	
Figure	4.9	
	
Red	=	1.5	inch	linear,	Green	=	1.0	inch	linear,	Blue	=	1.0	inch	circular	
With	the	1.0	inch	cubes	the	asymmetry	is	less	than	.5	mm.	
	
5.	Centroid	vs	velocity	aberration.	
	
The	proposed	design	minimizes	the	variation	of	the	centroid	with	velocity	aberration	by	
choosing	the	size	of	the	cube	to	place	the	velocity	aberration	on	a	peak	in	the	pattern.	The	
results	are	plotted	in	the	figures	below.	The	velocity	aberration	varies	between	about	32	and	40	
microradians.	Linear	vertical	polarization	is	used.	
	

Centroid	vs	velocity	aberration	
	

1.5	inch	cube	
Red	=	average,	Green	=	minimum,	Blue	=	maximum	

	
	
Figure	5.1	



1.0	inch	

	
	
Figure	5.2	
	
The	average	(red	curve)	for	the	1.5	inch	cube	changes	by	.74	mm	from	32	to	40	microradians.	
However,	the	asymmetry	of	the	pattern	causes	significant	range	errors.	The	change	of	the	red	
curve	is	.47	mm	for	the	1.0	inch	cube	with	very	little	asymmetry.	This	is	within	the	accuracy	goal	
of	one	millimeter.	A	correction	could	be	applied	as	a	function	of	velocity	aberration.	
	
6.	Thermal	simulations	
	
If	there	were	no	thermal	gradients	the	range	correction	would	be	constant.	It	could	be	
measured	in	the	lab	before	launch.	It	could	be	computed	theoretically	using	the	parameters	of	
the	cube	corners	and	the	measured	dihedral	angle	offsets.	The	average	cross	section	vs	velocity	
aberration	is	the	same	for	either	a	positive	or	negative	dihedral	angle	offset	if	there	are	no	
thermal	gradients.	As	a	measure	of	the	effect	of	thermal	gradients	the	cross	section	vs	velocity	
aberration	has	been	computed	for	a	positive	and	a	negative	dihedral	angle	offset	under	various	
thermal	conditions.	
	
Antonio	Paolozzi	has	provided	four	thermal	simulations	under	different	conditions	for	a	1.0	inch	
uncoated	cube.	The	output	of	the	thermal	simulations	is	a	three-dimensional	matrix	giving	the	
temperature	distribution	in	the	cube.	The	first	step	is	to	do	a	ray	tracing	to	get	the	phase	front	
due	to	the	thermal	gradients.	The	next	step	is	to	add	phase	changes	due	to	dihedral	angle	
offsets	and	total	internal	reflection.	The	far	field	pattern	is	computed	from	the	phase	front.	The	
pattern	is	processed	to	compute	the	average	cross	section	vs	velocity	aberration.	Three	
simulations	have	been	run	for	each	case.		The	reference	case	is	with	a	dihedral	angle	offset	of	
either	+	or	-	1.25	arcsec	with	no	thermal	gradient.	This	is	compared	to	the	cross	section	vs	
velocity	aberration	with	a	+	and	-	dihedral	angle	offset	and	thermal	gradients.	The	phase	front	
due	to	a	thermal	gradient	may	be	either	primarily	concave	or	primarily	convex.	The	phase	front	
for	a	dihedral	angle	offset	is	either	concave	or	convex	depending	on	the	sign	of	the	dihedral	
angle	offset.	A	dihedral	angle	offset	can	either	add	to	the	effect	of	a	thermal	gradient	or	
partially	cancel	it.	



	
In	the	figures	below	the	cross	section	is	averaged	around	circles	of	increasing	radius	in	the	far	
field	and	plotted	vs	the	magnitude	of	the	velocity	aberration.	The	simulations	are	done	for	a	
single	cube	corner.	
	
	

Case	11	
Floating	mount	

Cube	temperature	259	K,	core	303	deg	K,	cavity	emissivity	7%.	
	

	
Figure	6.1	
	
Red	=	isothermal	+	or	-	1.25	dihedral	
Green	=	thermal	gradient,	+1.25	dihedral	
Blue	=	thermal	gradient,	-1.25	dihedral	
	
Case	11	
Cross	section	 Dihedral	angle		 Ratio	to	isothermal	 %	change	
0.669622	 -1.25	 	1.04	 +.04	
0.643655	 Isothermal	 	1.00	 0.00	
0.607758	 +1.25	 	0.94	 -.06	
Table	6.1	
	
	



	
Case	12	

Mount	conduction	
Cube	temperature	293	K,	core	303	deg	K,	emissivity	7%	

	
Figure	6.2	
	
Red	=	isothermal	+	or	-	1.25	dihedral	
Green	=	thermal	gradient,	+1.25	dihedral	
Blue	=	thermal	gradient,	-1.25	dihedral	
	
	
Case	12	
Cross	section	 Dihedral	angle		 Ratio	to	isothermal	 %	change	
0.768003	 -1.25	 1.19	 +.19	
0.643655	 Isothermal	 1.00	 0.00	
0.505958	 +1.25	 0.786	 -.214	
Table	6.2	
	
	
	
	



	
Case	16	

Floating	mount	
Cube	temperature	359	K,	core	413	deg	K,	emissivity	29%	

	
Figure	6.3	
	
Red	=					isothermal,	dihedral	=	+	or	-1.25	arcsec	
Green	=	dihedral	=	-1.25	arcsec	
Blue	=			dihedral	=	+1.5	arcsec	
	
Case	16	
Cross	section	 Dihedral	angle	 Ratio	to	isothermal	 %	change	
0.345158	 -1.25	 0.49	 -.51	
0.704266	 Isothermal	 1.00	 0.00	
0.748466	 +1.25	 1.06	 +.06	
Table	6.3	
	
	



	
Case	17	

Cube	temperature	298	K,	core	343	deg	K,	cavity	emissivity	29%	

	
Figure	6.4	
	
Red	=					isothermal,	dihedral	=	+1.25	arcsec	
Green	=	thermal	gradient,		-1.25	arcsec	dihedral	
Blue	=				Thermal	gradient,	+1.25	arcsec	dihedral	
	
Case	17	
Cross	section	 Dihedral	angle	 Ratio	to	isothermal	 %	change	
0.470063	 -1.25	 	0.73	 -.27	
0.643655	 Isothermal	 	1.00	 0.00	
0.748049	 +1.25	 	1.16	 +.16	
Table	6.4	
	
	
	



	
Percent	change	in	cross	section	vs	temperature	

	
																																																																																														%	change	in	cross	section					Average	

Case	 Emissivity	 Cond.	 Core	temp	 Cube	Temp	 Dih	=	-1.25	 Dih	=	+1.25	 %	change	
	 	 	 	 	 	 	 	
11	 .07	 no	 303	 259	 +.04	 -.060	 .05	
12	 .07	 yes	 303	 293	 +.19	 -.214	 .20	
17	 .29	 no	 343	 298	 -.27	 +.160	 .215	
16	 .29	 no	 413	 359	 -.51	 +.060	 .57	

Table	6.5	
	

Fractional	change	in	cross	section	vs	temperature	

	
	
Figure	6.5.	Plot	of	average	vs	cube	temperatre	from	table	6.5	
	
If	the	temperature	of	the	cube	is	below	about	250	deg	K	there	should	be	negligible	thermal	
effects.	
	
7.	Equations	of	equilibrium	
	
The	thermal	simulations	show	that	the	cube	corner	must	be	kept	as	cool	as	possible	in	order	to	
minimize	thermal	problems.	The	temperature	of	the	core	and	the	cube	depends	on	the	
absorptivity	and	emissivity	of	the	core,	the	mounting	cavity,	and	the	cube	corners.	These	
parameters	need	to	be	chosen	to	minimize	the	temperature	of	the	cube.	If	the	temperature	
variations	in	the	core	and	cube	corner	are	small	it	is	possible	to	derive	an	equation	for	the	
temperature	of	the	cubes	and	the	core	as	follows.	
	



The effective emissivity eeff between the core and the cube is defined by the equation	
 
1
ecore

+
1
ecube

−1= 1
eeff          (1) 

 
The thermal radiation from the core to the cube consists of two parts. There is radiation from the 
retaining rings and radiation directly from the core. The total thermal radiation to the cube is 
 
Rcore =σ ecavAcav + eringsArings( ) tcore4 − tcube

4( )  
 
where 
s      = Stefan Boltzman constant = 5.6697×10

−8
in MKS units 

ecav   = the effective emissivity to the core 
Acav  = the area of the cube that radiates to the core 
erings  =  the effective emissivity to the rings 
Arings  = the area of the cube that radiates to the rings 
tcore  = the temperature of the cavity 
tcube  = the temperature of the cube corner 
 
If we define 
 
eeff Ab  = ecavAcav + eringsArings  
 
Then we have 
 
Rcore =σeeff Ab(tcore

4 − tcube
4 ) 	 	 	 	 	 	 	 	 (2)	

	
where	
eeff  = the effective emissivity between the core and the cube corner 
Ab  = the total surface area of the back of the cube corner 
 
This initial analysis neglects the mounting rings. Since the radiation from the rings and the cavity 
differs only by a constant with the same temperature dependence the rings can easily be added to 

the computation in the term eeff Ab . 
 
The temperature of the cube varies by a couple of degrees between the front and the back. Using 
the average temperature of the cube is adequate for computing the approximate equilibrium 
temperature. 
 



The heat conducted through the mounting is 
 
Cm = c(tcore − tcube ) 	 	 	 	 	 	 	 	 	 (3) 
 
where c is the conductance of the mount. The Arthur D. Little report on LAGEOS-1 gives a 
measured value of 10 milliwats/°K per cube. 
 
The thermal radiation from the front face is 
 
Rf =σecubeAfTcube

4

	 	 	 	 	 	 	 	 	 (4) 
 
 
where 
ecube  = emissivity of the front face 
Af  = the area of the front face 
 
The equilibrium temperature is given by   
 
Heat emitted = heat absorbed 
 
σecubeAf tcube

4 = Rcore +Hcube         (5) 
 
Where Hcube  is all other heating such as conduction from the core, solar radiation, and earth 
infrared. 
 
Substituting equation (2) into equation (5) gives 
 
σecubeAf tcube

4 =σeeff Ab(tcore
4 − tcube

4 )+Hcube       (6) 
 
Combining terms we have  
(σeeff Ab +σecubeAf )tcube

4 =σeeff Abtcore
4 +Hcube       (7) 

 
The equilibrium temperature is given by 
 

tcube
4 =

σeeff Abtcore
4 +Hcube

σeeff Ab +σecubeAf         (8) 
 
The heat inputs and outputs to the core are: 
 
1. Thermal radiation to the cube. 
2. Heat conducted to the cube through the mount. 



3. Thermal radiation from the surface not covered by cube corners. 
4. Solar radiation. 
5. Earth infrared radiation. 
 
Equation (6) gives the thermal balance for the cube. It gives a relationship between the 
temperature of the core and the cube. The thermal balance equation for the core is 
 
Heat emitted = heat absorbed 
 
σecoreAcoretcore

4 + NRcore = Hcore         (9) 
 
N is the number of cubes and Hcore  is all other heat transfer such as energy received from solar 
radiation and earth infrared, and energy transferred to the cube by conduction. 
 
Substituting equation (2) into equation (9) 
 
σecoreAcoretcore

4 + Nσeeff Ab(tcore
4 − tcube

4 ) = Hcore       (10) 
 
Combining terms, 
 
(σecoreAcore + Nσeeff Ab )tcore

4 = Nσeeff Abtcube
4 +Hcore      (11) 

 
Equation (11) is the thermal balance equation for the core. It contains the temperature of the core 
and the temperature of the cube. Equation (8) can be used to eliminate the temperature of the 
cube. 
 
Substituting equation (8) into equation (11) gives 
 

(σecoreAcore + Nσeeff Ab )tcore
4 = Nσeeff Ab

σeeff Abtcore
4 +Hcube

σeeff Ab +σecubeAf

+Hcore

   (12) 
 
Equation (12) contains only the temperature of the core. This equation can be solved for the 
temperature of the core as a functions of the physical constants. Combining terms gives 
 

[σecoreAcore + Nσeeff Ab(1−
σeeff Ab

σeeff Ab +σecubeAf

)]tcore
4 = Nσeeff Ab

Hcube

σeeff Ab +σecubeAf

+Hcore

(13) 
 
Cancelling and combining factors of s gives 
 

σ [ecoreAcore + Neeff Ab(1−
eeff Ab

eeff Ab + ecubeAf

)]tcore
4 =

Neeff AbHcube

eeff Ab + ecubeAf

+Hcore

  (14) 
 



Simplifying the term in ( ) on the left side we have 
 

1−
eeff Ab

eeff Ab + ecubeAf

=
eeff Ab + ecubeAf − eeff Ab

eeff Ab + ecubeAf

=
ecubeAf

eeff Ab + ecubeAf  
 
Substituting the simplified expression and solving for the core temperature gives 
 

tcore
4 =

Neeff AbHcube

eeff Ab + ecubeAf

+Hcore

σ [ecoreAcore + Neeff Ab(
ecubeAf

eeff Ab + ecubeAf

)]
      (15) 

 
The core temperature computed from equation (15) can be substituted into equation (8) to obtain 
the cube temperature. 
 
The terms Hcube  and Hcore  contain the first power of the temperatures according to equation (3). 
If the conduction is zero this equation give the core temperature directly. If the conduction is not 
zero then an iterative solution is required. With a floating mount there should be negligible 
conduction between the mount and the cube in space. 
	



	
	
8.	Temperatures	of	Core	and	Cubes	
	
Two	cases	have	been	computed.	The	only	heating	is	solar	radiation.	The	cubes	are	1.0	inch	
diameter.	A	volumetric	solar	absorption	of	10%	is	used	since	the	path	length	in	the	cube	is	
shorter	than	in	a	1.5	inch	cube.	The	heating	is	the	average	over	the	whole	sphere.	The	solar	
heating	for	a	cube	at	normal	incidence	is	divided	by	4	to	get	the	average	solar	heating.	
	
	
Col	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	
Case	 αCore 	 εcore 	 εCavity 	 tsphere 	 tcore 	 tcube 	 Hcore 	 Hcube 	 Rcore 	 RToCube 	 Rcube 	
1	 .62	 .29	 .05	 338.7	 327.6	 209.1	 75.92	 .0177	 66.4	 .0317	 .0494	
2	 .62	 .29	 .29	 338.7	 302.7	 252.5	 75.92	 .0177	 49.7	 .0874	 .1050	
3	 .15	 .80	 .05	 184.3	 183.3	 164.6	 18.37	 .0176	 18.4	 .0013	 .0190	
4	 .15	 .80	 .29	 184.3	 181.0	 170.7	 18.37	 .0177	 17.1	 .0043	 .0220	
Table	8.1	
	
Column:	
1		Solar	absorptivity	of	the	core	
2		Emissivity	of	the	core	
3		Emissivity	of	the	cavity		
4		Temperature	of	a	sphere	with	no	cube	corners	
5		Temperature	of	the	core	
6		Temperature	of	a	cube	
7		Solar	heating	of	the	core	
8		Solar	heating	of	a	cube	corner	
9		Thermal	radiation	from	the	core	
10	Thermal	radiation	to	a	cube	corner	
11	Radiation	from	the	front	face	of	a	cube	corner	
	
The	amount	of	heating	is	independent	of	the	emissivity	of	the	cavity.	Changing	the	emissivity	
changes	the	ratio	of	the	heat	radiated	by	the	core	and	the	cubes.	When	the	emissivity	of	the	
cavity	is	increased	more	heat	is	radiated	by	the	cube	corner.	The	temperature	of	the	core	goes	
down	but	the	temperature	of	the	cube	goes	up.	Column	11	shows	the	increase	in	the	heat	
passing	through	the	cube.	This	is	what	causes	the	thermal	gradients.	
	
Cases	1	and	2	are	for	a	brushed	metal,	such	as	nickel.	The	thermal	constants	of	nickel	from	the	
document	"Thermo-Optical	Properties"	by	Isidoro	Martinez	are	absorptivity	=	.20,	and	
emissivity	.05.	If	nothing	is	done	to	the	surface	of	the	cavity	the	emissivity	should	be	.05.	If	the	
surface	is	sand	blasted	or	brushed	this	can	increase	the	emissivity.	It	also	increases	the	solar	
absorptivity.	If	the	emissivity	increases	more	than	the	absorptivity	the	net	result	is	to	cool	the	
core.	



	
A	better	approach	is	shown	by	Cases	3	and	4.	These	cases	assume	some	kind	of	OSR	(Optical	
Solar	Reflector,	or	Second	Surface	Reflector).	Metals	tend	to	have	a	higher	solar	absorptivity	
and	lower	emissivity	as	seen	in	the	case	of	nickel.	Metals	tend	to	run	hot.	Glasses	have	a	low	
solar	absorptivity	and	a	high	emissivity.	Glasses	tend	to	run	cold.	In	an	OSR	the	solar	radiation	
passes	through	a	thin	layer	of	glass	and	is	reflected	from	a	metal	surface.	The	metal	surface	
absorbs	some	of	the	solar	radiation.	This	heat	is	conducted	to	the	glass	and	radiated	from	the	
glass.	This	combination	achieves	a	very	low	a/e	(absorptivity/emissivity)	ratio.	
	
In	cases	3	and	4	the	core	and	the	cubes	achieve	very	low	temperatures.	
	
9.	Summary.	
	
The	use	of	small	cubes	eliminates	the	need	for	dihedral	angle	offsets.	This	allows	the	use	of	
inexpensive	COTS	cubes.	The	small	cubes	produce	a	much	more	accurate	isothermal	range	
correction.	If	the	temperature	of	the	cube	is	less	than	about	250	deg	K	the	percent	change	in	
cross	section	due	to	thermal	gradients	should	be	negligible.	In	this	case	the	isothermal	range	
correction	will	be	very	close	to	the	actual	range	correction	in	orbit.	
	
Specifically,	the	benefits	of	using	small	cubes	are:	
	
1.	There	is	more	uniform	coverage	of	the	surface	with	smaller	variations	with	incidence	angle.	
	
2.	The	1.5	inch	cubes	are	too	large	for	the	velocity	aberration	and	required	dihedral	angle	
offsets.	This	produces	a	"lumpy"	diffraction	pattern	that	causes	variations	in	range	within	the	
far	field	diffraction	pattern.	
	
3.	There	is	an	interaction	between	dihedral	angle	offsets	and	the	phase	changes	due	to	total	
internal	reflection	that	produces	an	asymmetrical	diffraction	pattern	when	linear	polarization	is	
used.	
	
4.	The	1.0	inch	cubes	provide	the	necessary	beam	spread	to	account	for	velocity	aberration	
without	the	need	for	dihedral	angle	offsets.	This	also	removes	the	asymmetry	in	the	diffraction	
pattern	with	linear	polarization.	
	
5.	The	diffraction	pattern	without	dihedral	angle	offsets	is	smoother	than	the	patterns	with	
offsets.	
	
6.	The	diffraction	pattern	of	an	uncoated	cube	has	a	ring	of	spots	around	the	central	peak.	The	
size	of	the	cube	can	be	chosen	to	put	the	velocity	aberration	on	this	ring	of	spots	rather	than	on	
a	slope	in	the	diffraction	pattern.	This	reduces	the	variation	of	the	range	correction	with	
velocity	aberration.	This	ring	of	spots	is	a	very	stable	part	of	the	diffraction	pattern	that	does	
not	change	much	due	to	various	perturbations.	
	



7.	Thermal	effects	increase	as	some	power	(approximately	the	4th	power)	of	the	size.	The	
reduction	in	size	from	1.5	to	1.0	inches	appears	to	reduce	variations	in	the	cross	section	by	
about	a	factor	of	5	or	6.	
	
8.	Eliminating	the	dihedral	angle	offset	makes	it	possible	to	use	COTS	(Commercial	Off-The-
Shelf)	cubes	that	are	inexpensive	and	available	quickly.	Testing	by	Ludwig	Grunwaldt	shows	that	
the	optical	quality	of	these	cubes	is	as	good	as	custom	made	cubes	with	dihedral	angle	offsets	
that	are	expensive	and	time	consuming	to	manufacture.	
	
9.	There	are	small	unintentional	dihedral	angle	offsets	in	COTS	cubes	that	are	generally	less	
than	one	arsec	but	can	be	up	to	two	arcsec.	The	effect	of	a	positive	(>90	deg)	offset	is	in	the	
opposite	direction	from	the	effect	of	a	negative	(<90	deg)	offset.	Since	the	mean	offset	is	zero	
the	positive	offsets	tend	to	partially	cancel	the	effect	of	the	negative	offsets.	
	
10.	Thermal	simulations	show	that	the	effect	of	thermal	gradients	in	a	1.0	inch	cube	is	very	
small	with	a	floating	mount.	
	
11.	A	floating	mount	requires	leaving	a	small	gap	between	the	ring	and	the	cube.	This	could	
potentially	result	in	damage	to	the	cube	due	to	vibrations	during	launch.	Vibration	testing	with	
a	very	large	gap	showed	no	damage	to	the	cube.	
	
12.	The	thermal	simulations	show	that	the	fractional	change	in	cross	section	due	to	thermal	
gradients	is	nearly	linear	with	the	temperature	of	the	cube.	


