Microreflectors for Mars, Phobos/Deimos and Asteroids/Comets

Dr. Marco Muccino¹, Dr. Simone Dell'Agnello¹, Mr. Giovanni Delle Monache¹, Mr. Luca Porcelli¹, Mr. Lorenzo Salvatori¹, Mr. Mattia Tibuzzi¹, Miss Chiara Mondaini¹, Dr. Giuseppe Bianco², Daniele Dequal², Roberto Vittori¹, Dr. John Chandler³, Dr. Riccardo March¹, Dr. Orlando Luongo¹, Mr. Luca Ioppi¹, Miss Maria Tantalo¹, Mr. Matteo Petrassi¹, Raffaele Mugnuolo², Mauro Maiello¹, Dr. Maurizio Di Paolo Emilio¹ ¹INFN - LNF, Frascati (RM), Italy, ²ASI - CGS, Matera (MT), Italy, ³Harvard-Smithsonian Center for Astrophysics, Cambridge, USA

The SCF_Lab (Satellite/lunar laser ranging Characterization Facilities Lab) at INFN-LNF has started its activity of design, construction, qualification of microreflectors to be deployed on Mars to provide the accurate position of landers and rovers through the laser ranging (LR) technique by orbiters. The first one, INRRI (INstrument for landing-Roving laser Retroreflector Investigations), was launched in 2016 with the ESA mission ExoMars (Exobiology on Mars), deployed on the Schiaparelli lander. A second one, LaRRI (Laser Retro-Reflector for InSight), was integrated on NASA's InSight Mars Lander launched on May 5, 2018. A third one, LaRA (Laser Retroreflector Array), will be delivered to JPL for the NASA Mars 2020 Rover, and another INRRI will be delivered to ESA for deployment on the Exo-Mars 2020 Rover.

The SCF_Lab is developing also arrays of retroreflectors, designed to be observed from laser-equipped satellites orbiting around Mars and laser tracking the orbit of Phobos and Deimos, named PANDORA (Phobos ANd DeimOs Retroreflector Array).

PANDORA, INRRI, LaRRI and LaRA, can give information on the position on the center of mass of Mars for interesting tests of General Relativity (GR) at 1.5 AU in the Sun-Mars and Sun-Mars-Jupiter systems. These tests would be complementary to those achieved with Lunar Laser Ranging.

Other applications are for the minor bodies of the solar system. Laser microretroreflector arrays like COSPHERA (COmet/asteroid SPHErical Retroreflector Array) can be landed/dropped on asteroid or comet, supporting laser tracking by orbiters, laser altimetry capabilities, or lasercomm payloads that can also perform time-of-flight LR.