20th International Workshop on Laser Ranging 2016

13th October 2016, GFZ, Potsdam

Large corner-cube retroreflector & laser ranging for Chang' E-4 relay satellite

Hsien-Chi Yeh¹, Yu-Qiang Li², Yun He³, Qi Liu³ Hui-Zong Duan¹, Wei Tian¹

¹Sun Yat-sen University ²Yunnan Observatory, CAS ³Huazhong University of Science & Technology

- **1.** Motivation
- 2. Goals
- **3. Large Hollow CCR**
- 4. LR Station
- **5. Schedule**

Only a few regular LLR stations None in China so far

Station	(USA)	(USA)	(France)	(Italy)
	McDonald	Apache Point	GRASSE	Matera
Telesco	Diameter : 0.76m	Diameter : 3.5m	Diameter : 1.54m	Diameter : 1.5m
pe	Common path	Common path	Common path	Common path
Laser	Nd:YAG	Nd:YAG	Nd:YAG	Nd:YAG
	Energy:150mJ	Energy : 115 mJ	Energy : 220mJ	Energy : 200mJ
	Width : 200ps	Width : 90 ps	Width : 70ps	Width : 40ps
	λ : 532nm	λ : 532 nm	λ : 532nm	λ : 532nm
	R.R. : 10Hz	R.R. : 20Hz	R.R. : 10Hz	R.R. : 10Hz

Scientific Objectives of LLR

	Current status	LLR precision 1mm
Weak E.P.	$\Delta a/a < 10^{-13}$	10-14
Strong E.P.	$\eta = 4\beta$ - γ -1 < 4×10 ⁻⁴	3×10 ⁻⁵
Time-variation of G	$\dot{G}/G < 9 \times 10^{-13} yr^{-1}$	5×10 ⁻¹⁴ yr ⁻¹
Inverse square law	$\alpha < 3 \times 10^{-11}$	10-12
PPN parameters	β-1 < 10 ⁻⁴	10 -5
Earth-Moon system	Moon : inner structure, orbit, levitation, deformation, inertial moments, etc. Earth : atmosphere (1~50mm), tides (2mm), rotation (2.6mm), precession (1.9mm), etc.	

Problems of Current CCRs

Nama	Sizo	CCR
Name	Size	Number
Apollo 11	3.8 cm	100
Apollo 14	3.8 cm	100
Apollo 15	3.8 cm	300
Lunakhod 1	11 cm	14
Lunakhod 2	11 cm	14

- > Aging after 45 years;
- Uncertain reflection position of CCR array coupling with lunar levitation causes a random error of about 7 cm.

CCR Array is the Bottleneck

Random error of LR system of Apache Point

Error Source	One way error (mm)
APD jitter	7.5
Pulse width	7.5
TDC jitter	3.8
Freq. reference	1 Max orror
APO system total	11
CCR array	12~35
Total random error	16~36
(single photon)	

- 1. Next-generation CCR (Single large CCR), carried by Chang' E 4 relay satellite;
- 2. Advanced LR stations in China (Lunar & Relay satellite laser ranging).

3. Large Hollow CCR

Merits : 1. Single & exact reflection point

Issue on Thermal Effect

Merits :

- 1. Single & exact reflection point
- 2. Insensitive to thermal effect

Thermal coeff. Refractive index~10⁻⁵/K Grad. T ~ 0.1K/mm

Solid CCR: deformation of 90° > 10"
Hollow CCR: negligible if mounting properly

Issue on Mass

Merits :

- 1. Single & exact reflection point
- 2. Insensitive to thermal effect
- 3. Lighter mass

17-cm Aperture CCR	mass(g)
Solid	3070
Hollow	1584

Issue on Divergence Angle

Merits :

- 1. Single & exact reflection point
- 2. Insensitive to thermal effect
- 3. Lighter mass
- 4. Smaller divergence angle

	D (cm)	# CCR	Reflectivity
Single	17	1	0.6
Apollo 15	3.8	300	0.9

17-cm single CCR = Apollo-15 CCR array

$$heta_{div} \propto rac{\lambda}{D}$$

Demerits of Large Hollow CCR

1. Precision of angle:

- difficult to manufacture from monolithic piece
- silicate bonding
- 2. Mechanical Rigidity:
 - weaker than that of solid one
 - high-efficiency vibration isolation devices
- 3. Coating:
 - sensitive to radiation & thermal effect
 - Ag or dielectric coating

Structure of CCR Retro-Reflector

□Envelop : Φ240mm×300mm

Inner components : CCR、housing (mounting & protection, minimizing temp. grad.)、vibration isolation device、window

Prototype Testing

No. prototype	Testing date	Angle ccuracy
YJ001 (silicate bonding)	2016-03-03	28", 20", 11"
YJ002	2016-03-21	3", 8", 11"
(thermal cycle) (-15~+50°C)	2016-03-27	8″, 8″, 8″
£00LA	2016-05-05	1", 1", 6"
(optical test)	2016-05-10	3″, 1″, 11″
ZYGO interferometer	2016-06-15	2.9", 2.8", 7.8"

4. LR Station

• Upgrade 1.2-m telescope :

less time & funding are needed

• Two phases :

1st phase: 3J/pulse, 10ns, 10Hz laser (to obtain returned signal)
2nd phase: 100mJ/pulse, 60ps, 1kHz laser (to increase precision)

Kunming station

Received Photon Number

	1 st Phase		2 nd Phase	
Target	Apollo 15	RS	Apollo 15	RS
	retroreflector	CCR	retroreflector	CCR
Pulse energy	3	3	0.1	0.1
Telescope diameter	1.06	1.06	1.06	1.06
Div. Angle of laser (arcsec)	2	2	2	2
Div. angle of CCR (arcsec)	8	2	8	2
Opt. efficiency (emitting)	0.4	0.4	0.4	0.4
Opt. efficiency (receiving)	0.2	0.2	0.2	0.2
Transmission of atmosphere	0.6	0.6	0.6	0.6
Reflectivity of CCR	0.9	0.6	0.9	0.6
Area of CCR (m ²)	0.34	0.0227	0.34	0.0227
Distance (×10 ⁴ km)	38.4	45.0	38.4	45.0
Antenuation	0.1	0.1	0.1	0.1
Repetition rate (Hz)	10	10	1000	1000
QE of detector (%)	60	60	60	60
Received photons/pulse	1.98	0.74	0.26	0.1

Error Budget

	Error Source	1 st Phase	2 nd Phase
IS	C-SPAD jitter	3 mm	3 mm
Erro	Pulse width	1500 mm	9 mm
B	TDC jitter	3 mm	3 mm
nde	Frequency reference	1 mm	1 mm
Ra	Hollow CCR	negligible	negligible
Grand Total (single photon)			0.2
		T'2 W	9.2 MM

, Schedule

Conclusion

Lunar & Relay-Satellite LR

- A 17-cm hollow CCR will be installed on Chang' E
 4 relay satellite, and LLR & RSLR will be carried
 out in 2018.
- □ Accomplish the 1st step of LLR in China
 - To prove the validity of large hollow CCR
 - To enhance the LR capability in China

Thanks for your attention

Mechanical Analysis

order	Natural frequency (Hz)
1	652.18
2	802.
3	935.
4	1063.5
5	1315.6

Acceleration	Max. applied force (MPa)	
direction	200g	300g
⊥ Bonding interface	4	6.1
⊥ Mirror plane	8.9	13

