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Next Generation Retroreflector Teams

« UMCP Team * INFN Team
— Douglas Currie — Emanuele Cioccia,
— Bradford Behr — Manuele Matrtinia,
— Chensheng Wu — Stefania Contessaa,
— Christopher Davis — Luca Porcellia,
— Giovanni Delle Monache — Marco Mastronia,

— Giovanni Delle Monache,
— Simone Dell'Agnelloa
— Douglas Currie
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* Most of the Best Tests of Gravitation and General Relativity

* Deep Interior of the Moon
— Liquid Core — 2002 — Parameters Confirmed by Rene Weber
— Currently Collaborating with GRAIL for Surface to Core Physics

 Fundamental Selenodetic Coordinate System

— Used as Reference for Maps of Other NASA Mission
« Many other Maps that Need to Be Connected
* Need More CCRs
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* WIll Support Improved Lunar Ranging Accuracy
— Improved Ranging Accuracy Supported by a factor of 100
— Allows A Role for Smaller Apertures (i.e. SLR Stations)

* Expect Reflection of Improved Accuracy in Improved Science
— Gravitation (Address Modifications in G to Explain Dark Matter)

— General Relativity Tests
— Addressing Theories of Dark Matter and Perhaps Dark Energy

20t International WorkShop on Laser Ranging 4
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 Heat Load 3D - IDL Program - UMCP

« Power Dumped in each mm Cube, as a Function of Wavelength
* Through Changing Angles During a Lunation

 Thermal Desktop — C&R Technologies & Frascati
« Converts Heat Load to Temperature via Internal Conduction _
* Handles Conductive & Radiation Exchanges with Space and Regol
« Through Changing Solar Angles during a Lunation | |

« TPS — IDL Program - UMCP

« Converts Temperatures to Refractive Index
» Creates Output Phases and Far Field Diffraction Pattern

20t International WorkShop on Laser Ranging 5
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« Axial Gradients
— Results in Spreading of Outgoind Beam
— Few Tenths of a Degree
— Controlled by Isolating Rear Face of CCR
— Low Emissivity Silver Coating at 0.01
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« Axial Gradients
— Results in Spreading of Out-Going Beam
— Need Few Tenths of a Degree

 Radial Gradients
— Addressed Near the Front Face of the CCR

— Conduction and Radiation near the Support Tabs
« Conduction Controlled by “Wires” with Small Area
« Radiation Controlled by Low Emissivity Silver Coating Plastic Rings

20t International WorkShop on Laser Ranging
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« Axial Gradients
— Results in Spreading of Out-Going Beam
— Few Tenths of a Degree

 Radial Gradients
— Addressed Near the Front Face of the CCR

— Conduction and Radiation near the Support Tabs
« Conduction Controlled by “Wires” with Small Area
« Radiation Controlled by Silver Coating Plastic Rings

« SCF Testing In Frascati has shown
— Control of Axial Effects
— Control of Cylinderical Wall Radiation Effects

20t International WorkShop on Laser Ranging
Potsdam, Germany
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* Analysis of Simulation Results has Pointed to Other Effects

» Classically, We Have Expected for an Uncoated CCR
— Have TIR Over Useful areas for Rejection of Solar Breakthrough
— This Assumption has Defined Some our Package Design

« However the Simulations Indicted Energy Passing Through

— Depositing Additional Solar Energy in the Housing
— For Unexpected Angles of Incidence of the Sun

20t International WorkShop on Laser Ranging
Potsdam, Germany
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* Deposited Energy Due to TIR Failure

* Throughout the Solar Angles During a Lunation
— Sunrise through Day 7.5 — Expected Breakthrough
— Days 7.5 to 9.5 Expected Rejection of Sun by TIR
— Unexpected Breakthrough of TIR from Day 9.5to0 11.5

) 10 15 20 23 on Laser Ranging
Time during Lunation (Days) any
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« Thermal Control (Absorption and Emissivity) & Lifetime Issues:
« AZ-93 Inorganic  White 0.15+0.02  0.91+0.02
AZW/LA-II Inorganic  White 0.09+0.02 0.91+0.02

Interferential CERMET by Consorzio CREO in Italy
Gold - No Adhesion Layer 0.10 0.88

Gold — With Adhesion Layer 0.10 0.88

— Full Temperature Range has been Tested on the B-C Titanium Base
— Temperature Range on Our Gold/Nickel Base to be Tested at UMCP

20t International WorkShop on Laser Ranging 11
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Addressing Effect of Atmosphere on Multiple Returns

Multiple Return Bias Range Determination

— Especially at the Millimeter Level

Analysis by Chensheng Wu, Post-Doc at UMCP
Using GLAD Software

Vertical Turbulence Profiles

— Measured at SALT Telescope & Gemini South Telescope Sites
— Hufnagel-Hill Vertical Turbulence Profile of Cn2

20t International WorkShop on Laser Ranging 12
Potsdam, Germany



IRINE PN
Moont ot Wankonade

’fﬂ‘:a‘:m“ﬁ i [enthae{aT Seeeell

qERSIT},

SAtmospherlc Effect

Z,

 Measured Cn2 Profilers at Existing Astronomical Sites
— MASS-DIMM Cn2 Profile at SALT
— GMS Cn2 Profile at Gemini South

Beam Intensity Profile along the X Axis

Beam Intensity Profile on the Moon's Surface
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Beam Intensity Profile on the Moon's Surface Beam Intensity Profile along the X Acds
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=== Averaged over 50 realizations
— A single realization
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Normalized Beam Intensity Profile along the X Axis
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Beam Intensity Profile on the Moon's Surface (Single Realization) ===Averaged over 50 lterations

— Single Realization
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A’ Brief History of the Moon, .
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NASA Lunar Science Institute
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LSSO Team
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LUNAR Team
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- Eclipse Example: K422, 25%

Maximum Loss \
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* Current NGR Design Relies upon the Lander
—Achieving the Specified Azimuthal Orientation and
—Landing on a Relatively Level Region.

* “Pointed” System Addresses This

» Actively Provides the Correct Pol
—Then Locks Down for Rest of Missi

European Lunar Symposium
17-19 May 2016
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3 SIMULATIONS FUT
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Collaboration with University of Hannover

— Jurgen Mueller

— Franz Hofmann

Software Program Incorporating Details of Orbit, Accuracy, etc.

The Effects of the Operational Aspects on Improved Accuracy

— Effect of an Increased Number of Ground Stations

— Effect of Limited Operational Conditions (Day/Night, Bright/Dark Moon)

— Effect of Degradation due to Marginal NGR Design and/or Aging on Lunar Surface
— Role of Limited Ranging Opportunities

Criterial is Improvement in Various Science Parameters

— Typically a factor of 50 by 2030

20t International WorkShop on Laser Ranging 22
Potsdam, Germany
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» LLR Currently Provides our Best Tests of:

European Lunar Symposium
17-19 May 2016
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AGREEMENT F@R NGR @;ﬂm
DEPLOY

 In Frascati, ltaly at the Last Meeting oftrie ILRS

* An Agreement was Signed with Moon Express by

— University of Maryland, College Park, USA
— INFN-LNF of Frascati, Italy

» For the Deployment 'iﬁ "111% g
— Of our Next Generation Retroreflectors (J
5 ers.

— On the First of Four Flights of Moon Expres‘ s Lan

 First of these Deployments is Expec
— In the Second Half of 2017.

European Lunar Symposium
17-19 May 2016
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DEPLOYME

Challenges due to Wide Temperature Variations

— Temperature Changes from Lunar Day (320K) to Night (70K)

— For NGR mounted on a Lander,
— Implies that there is a Vertical Motion of 1 to a few Millimeters,
— Depending on the Lander Design.

To address this, an “Anchored” Deployment has been Investigated

One Meter Down in Regolith, Practically No Change in Temperature
—and

A Conceptual Design for Such a System has been Developed.

European Lunar Symposium 25
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