Satellite Laser Ranging with a fibre-based transmitter

Daniel Hampf, Fabian Sproll et al

German Aerospace Center, Institute for Technical Physics

ILRS Meeting 2016, Potsdam

Stuttgart observatory

Goal

Development of new technology for SLR

Milestones

2010: Financing, planning 2013: First light passiveoptical 2016: First SLR

Design and set-up

- Design drivers
 - Inexpensive standard components
 - Modular set-up
 - Small footprint
 - Development of all critical know-how
- Features:
 - Fibre-transmission from laser to transmitter
 - Operation at 1064 nm
 - High repetition rates (> 5 kHz)

Components

Specs

Laser power	~ 500 mW
Rep rate	5 kHz
Pulse duration	3 ns
FoV detector	10 arcsec / 50 µrad
Beam divergence	80 arcsec / 400 µrad
Detector noise	2 kHz

First results

- GEOS 3, tracking with TLE data, gating 20 μs

First results

• LAGEOS 2, using CPF prediction, gating 2 μs

Systematic offsets

• All results show systematic offset of 40 to 50 m against CPFs

Challenges and planned improvements

- Better calibration
 - High rep rate should result in high precision of NPT
 - · Systematic offsets have to be understood and eliminated
- Improvement of pointing model
 - → Blind tracking
 - ➔ Daylight ranging
- Extend range up to GNSS satellites
 - Decrease beam divergence
 - Increase pulse energy
 - Increase repetition rate

Fibre technologies

- Currently using standard optical fibres (multimode, 50 µm core diameter)
 → max: 100 µJ / 3 ns pulses
- Hollow core fibres (e.g. Kagome fibres) allow for much higher pulse energies
- "...using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations."

(Ciprian Dumitrache, Jordan Rath and Azer P. Yalin, Materials 2014, 7, 5700-5710)

Standard MM fibre damaged in tests

Kagome hollow core fibre

http://www.laserfocusworld.com/articles/print/volume-52/issue-05/features/photonic-frontiers-fiber-for-laser-beam-delivery-new-fibers-deliver-the-laser-beams.html

High rep rates: How much is useful?

- Ambiguity:
 - 1 km prediction accuracy \rightarrow 6.6 µs ambiguity \rightarrow max rep rate ~ 150 kHz

High rep rates: How much is useful?

- Ambiguity:
 - 1 km prediction accuracy → 6.6 µs ambiguity → max rep rate ~ 150 kHz
- Sensitivity:
 - Higher Rep-Rate \rightarrow signal and noise increase linearly $\rightarrow \frac{S}{\sqrt{N}}$ improves

High rep rates: How much is useful?

- Ambiguity:
 - 1 km prediction accuracy → 6.6 µs ambiguity → max rep rate ~ 150 kHz
- Sensitivity:
 - Higher Rep-Rate \rightarrow signal and noise increase linearly $\rightarrow \frac{S}{\sqrt{N}}$ improves
 - Assuming:
 - Min 50 events / second
 - Significance 5 sigma
 - Detector noise: 10 kHz
 - Gate size: 1 µs

At 100 kHz, a return ratio of 0.1% is sufficient for clear signal

High rep rates: What is technically feasible?

- High data rate needs to be handled
 - Picoharp 300 event timer: 5 Mcps
 - Software: Parallel processing

High rep rates: What is technically feasible?

- High data rate needs to be handled
 - Picoharp 300 event timer: 5 Mcps
 - Software: Parallel processing
- What about backscatter?
 - ➔ Use of burst mode

- 100 kHz rep rate
- ➔ 1000 pulses per burst

Conclusions

- Fibre-coupled transmitters can be used for SLR
- Stuttgart station is up and running
- Improvements in accuracy, maximum range and towards daytime ranging are underway

