Monolithic high energy picosecond laser sources for laser ranging applications

Andreas Boerner, Norbert Graf, Reinhard Kelnberger

20th Int. Workshop on Laser Ranging, GFZ Potsdam, 2016

InnoLas Laser GmbH: Company Overview

- Located near Munich / Germany
- 25 people (mainly engineers)
- Founded 1995
- High Energy Nano- and Picosecond Lasers for scientific and industrial markets

InnoLas Laser GmbH: Company Overview

High Energy, Q-switched Nd:YAG lasers with <10 ns pulse width:

- Flashlamp Pumping: up to 2.5 Joule pulse energy, up to 30 Hz repetition rate
- Diode Pumping (DPSS=Diode Pumped Solid State): up to 1 Joule pulse energy, up to 100 W, up to 1000 Hz

InnoLas Laser GmbH: "Ranging" experience

1) Previous cooperation with High Q Laser for high energy Picosecond Lasers \rightarrow SLR

New InnoLas product: Monolithic high energy picosecond lasers

2) Nanosecond Lasers for demanding LIDAR applications (truck/plane/container mounted, remote access, maintenance free)

 \rightarrow Suitable sources for Space Debris tracking (up to 100 W, up to 1000 Hz)

Finished projects of picosecond amplifiers

1) Wettzell (Germany) – Günther Herold

Satellite and Lunar Ranging

Cooperation of InnoLas Laser and High Q Laser

Regenerative Amplifier system (1 mJ) + combined diode pumped (DPSS)/Flashlamp amplifier:

Courtesy of BKG

100 mJ at 1064 nm, 50 mJ at 532 nm 12 ps pulse duration 20 Hz repetition rate

Finished projects of picosecond amplifiers

2) U of Applied Sciences Giessen-Friedberg (Germany) – Johannes Ohlert

Ablation Experiments, future plan to use for SLR

Cooperation of High Q Laser and InnoLas Laser

Regenerative Amplifier system (1 mJ) + Flashlamp amplifier:

100 mJ at 1064 nm, 50 mJ at 532 nm, 25 mJ at 355 nm 12 ps pulse duration 10 Hz repetition rate

PSA – Picosecond Amplifier Systems

Picosecond seeder and High Energy amplifier

in one compact, monolithic housing

PSA – Picosecond Amplifier Systems

Integration of Picosecond seeder and Post-Amp in monolithic housing leads to compact size and high alignment stability

Picosecond source: industrial fiber system

- Fixed pulse width 10-100 ps
- Designed for maximum uptime in 24/7 operation

High-Energy amplifier:

- Flashlamp or Diode pumped Nd:YAG modules
- Using long-term evaluated standard components from nanosecond products

Footprint: Min. 50 x 50 cm²

PSA – Lunar Ranging Laser Source

1) Lamp Pumped amplifier

High energy at low repetition rates (max. 20-30 Hz)

Flash Lamp Pumped - 10Hz					
	100 ps		10 ps		
	1064 nm	532 nm	1064 nm	532 nm	
PSA III	200mJ	100 mJ	20 mJ	10 mJ	
PSA IV	500 mJ	250 mJ	100 mJ	50 mJ	
PSA V	1000 mJ	500 mJ	200 mJ	(100 mJ	

 \rightarrow Enough energy for Lunar Ranging

Courtesy of NASA

PSA – Satellite Ranging Laser Source

2) Diode pumped amplifier

Signal Dummand 100 Ll-

High average power, high repetition rates (max. 1000 Hz)

51	1	
N.		۵
	A.	
	V	1,
		///

Diode Pumped – 100 Hz				
	100ps		10 ps	
	1064 nm	532 nm	1064 nm	532 nm
PSA EVO I	30 mJ	15 mJ	10 mJ	5 mJ
PSA EVO II	100 mJ	50 mJ	40 mJ	20 mJ
PSA EVO III	200 mJ	100 mJ	100 mJ	50 mJ

Diode Pumped - 1KHz

	100 ps		10 ps	
	1064 nm	532 nm	1064 nm	532 nm
PSA EVO I	4 mJ	2 mJ	4 mJ	2 mJ
PSA EVO II	10 mJ	5 mJ	10 mJ	5 mJ
PSA EVO III	20 mJ	8 mJ	20 mJ	8 mJ

PSA – Picosecond Amplifier Systems

- Flexible system layout allows tailored systems for your setup
- Various integrated monitoring options available (Energy Monitor, Beam Profiler...)
- We can match our amplifiers to all kinds of existing picosecond seed lasers → contact us for your solution!

SpitLight EVO – Nanosecond DPSS Lasers

Q-switched lasers with <10ns pulse duration

up to 1000 mJ at 100 Hz / up to 60 W at 532nm

Space Debris Detection

Courtesy of ESA

SpitLight EVO – Space Debris Ranging Source

Power 1064 nm	EVO I	EVO II	EVO III	EVO IV
100 Hz	20 W	40 W	60 W	100W
200 Hz	24 W	50 W	100 W	-
300 Hz	25 W	40 W	75 W	-
500 Hz	25 W	40 W	75 W	-

Courtesy of ESA

Energy Conversion to:

532 nm → 60%

355 nm → 30%

For dual output: energy distribution can be remote controlled via software

SpitLight EVO – Space Debris Ranging Source

Advantages of DPSS lasers:

- >> 2 billion shot diode lifetime → maintenance free over long time
- High Average Power (up to 100 W at 1064 nm) at 100 1000 Hz
- Compact and rugged: mounting on telescope arm?

SpitLight EVO – Space Debris Ranging Source

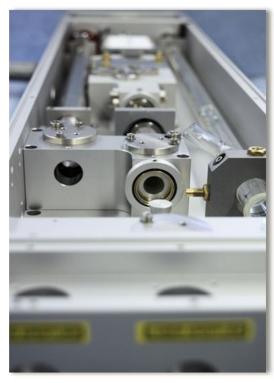
Small Footprint, rugged housing:

EVO III:

500 x 272 x 125 mm, 30 kg

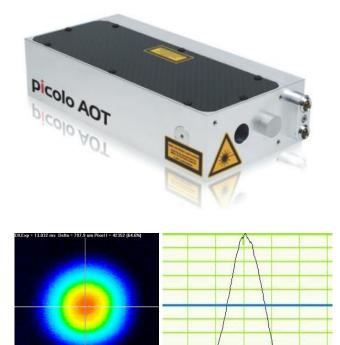
100 Watt!

500 x 425 x 125 mm


Q-switched lasers with 500 ps pulse duration

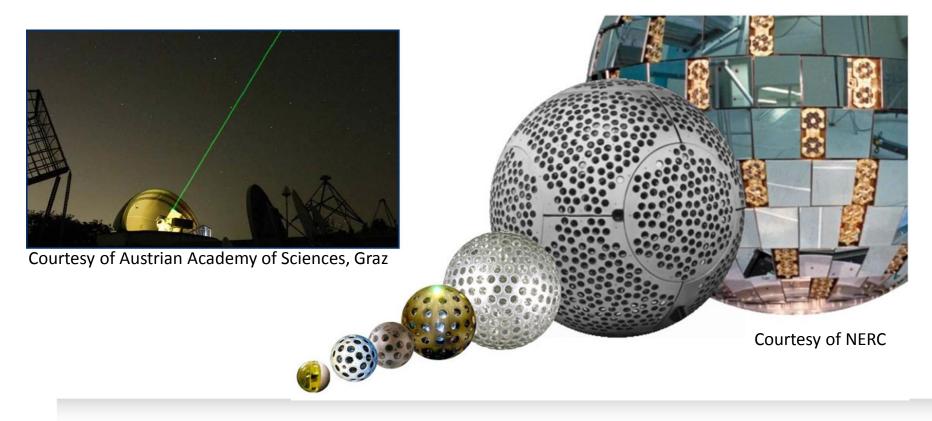
up to 2000 mJ / up to 1000 Hz / up to 25 W

MAGNA – Basic setup


- Combination of two standard systems:
 - <u>picolo</u>: sub-nanosecond oscillator
 - **<u>SpitLight</u>**: Flashlamp or DPSS amplifier stages
- Integration in one monolithic housing → maximum alignment stability
- Using long-term evaluated standard components from nanosecond products

picolo / picolo MOPA

picolo: Sub-nanosecond Nd:YVO₄ oscillator


Advantages:

- Short oscillator and fast q-switch → pulses down to 500 ps
- Good beam quality: TEM_{00} , $M^2 < 1.3$
- Compact laser head and power supply with small footprint (19", 1 RU)
- No external cooling required

Let's discuss your laser needs!

