

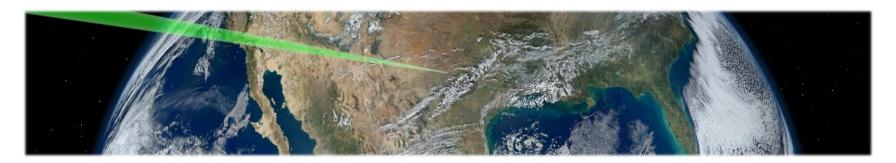
The Gimbal and Telescope Assembly for NASA's Next Generation Space Geodesy SLR Systems

20th International Laser Ranging Workshop Potsdam, Germany October 9 – 14, 2016

H. Donovan¹, D. Patterson¹, S. Wetzel¹, J. Marzouk², J. Mcgarry, J³. Degnan²,
A. Nelson¹, F. Hall¹, J. Horvath¹, J. Cheek², M. Shappirio³, E. Hoffman³

¹Honeywell Technology Solutions Inc., Lanham, MD | ²Sigma Space Corp., Greenbelt, MD | ³NASA Goddard Space Flight Center, Greenbelt, MD

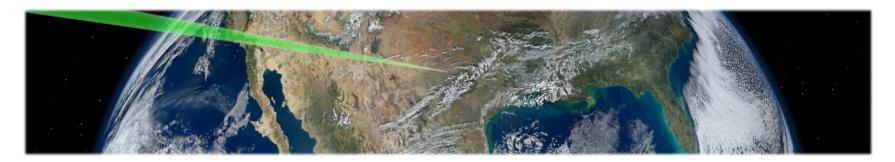
Outline



- Introduction
- SGSLR Gimbal and Telescope Assembly (GTA) Locations
- Specification Development
 - Invariant Point
 - Precision Pointing
- Vendor Selection
- Design Status
 - Gimbal Design
 - Optical Design
 - GTA Imaging properties required by sensor array

Summary

INTRODUCTION


Introduction

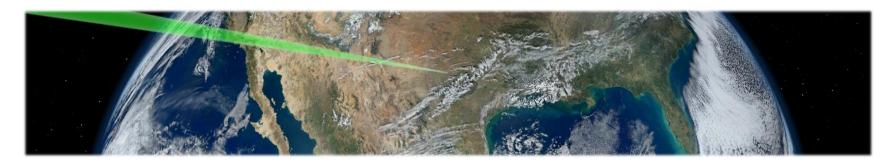
- The Gimbal and Telescope Assembly (GTA)
 - One of the most important components of an SLR system
 - The component with the longest lead time item
- Specification and Procurement
 - The SGSLR GTA team developed very stringent specifications in 2015
 - The NASA Space Geodesy Project (SGP) is in the process of procuring three highly precise and very stable GTA systems
- Design and fabrication efforts include complex modeling which ensures
 - Precise telescope pointing
 - A very stable invariant point through a wide range of temperatures
 - Required due to the variations in the climate at the expected NASA SGP network sites
- SGSLR GTA will need to take advantage of the pixelated receiver subsystem which provides range and angular information needed for automated tracking operations
 - See John Degnan's paper "PROGRESS ON THE MULTIFUNCTIONAL RANGE RECEIVER FOR SGSLR"

GTA LOCATIONS

SGSLR Locations

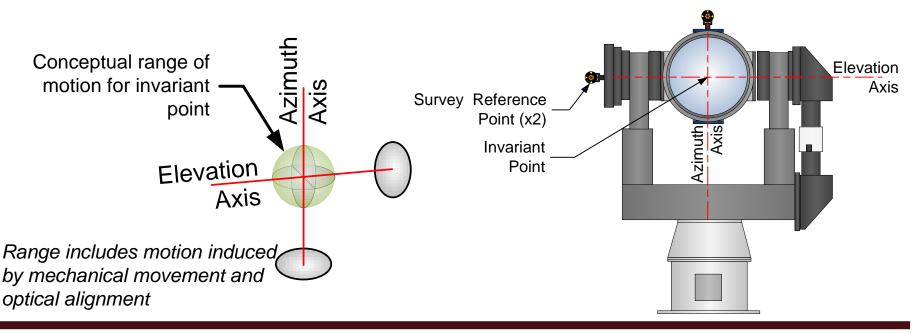
- GTA #1 delivered to GSFC in Greenbelt, MD: Field Acceptance Testing then shipped to Ny-Alesund, Norway Norwegian Mapping Agency (NMA)
- GTA #2 delivered to GSFC in Greenbelt, MD: Field Acceptance Testing, then to Haleakala, HI
- GTA #3 delivered directly to MLRS in Ft. Davis, TX: Filed Acceptance Testing

- Colder than any site currently in operation for NASA SLR Network
 - Reaches -20°C, average minimum for coldest month is -15°C
 - Average high 5°C with a max of 11°C
 - GTA will be able to handle these temperatures
- Star calibrations must be done in daylight
 - Mount stability is expected to hold mount model for months
 - Technique developed where two offset images are taken then one is subtracted from the other to remove background



- Texas No extreme weather conditions
 - Average low is -17°C but has reached -20°C
 - Average high 37°C but has reached 45°C
 - GTA will be able to handle these temperatures
- Hawaii No extreme weather conditions
 - Average low is 8°C but has reached -9°C
 - Average high 17°C but has reached 23°C
 - GTA will be able to handle these temperatures

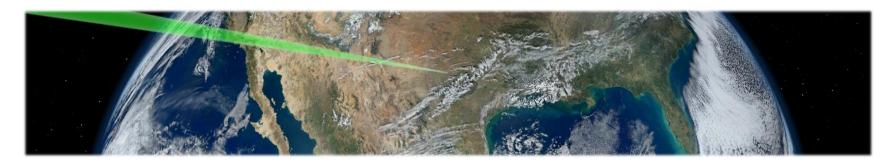
SPECIFICATION DEVELOPMENT


- Tracking requirements:
 - Satellite altitudes
 - 300 km to 22,000 km (LEO to GNSS), day & night
 - 42,000 km geosynchronous and geostationary, night only
 - Tight divergence, low laser energy, small receiver FOV
 - Requires precision pointing to place and maintain the low laser energy on the satellite and the receiver in the FOV
 - Support varying velocities, high accelerations, and high inertial loads while providing smooth trajectory to maintain link to the satellite
 - Gimbal pointing must synchronously intersect the satellite trajectory coincident with the laser 2 kHz transmit rate

Invariant Point (System Origin)

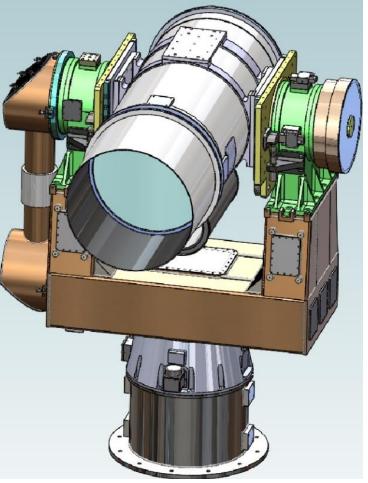
- Motion of the intersection of the GTA axes must be known with respect to external reference points and measured by survey
- Affected by temperature, bearing wobble, bearing runout, axis orthogonality, and axis intersection
- Knowledge reduces range measurement uncertainty
- Knowledge increases the accuracy of the GTA position location

- Origin of SGSLR system is the theoretical point used by the Science Community to define the location of the SLR system
 - Location where theoretical azimuth and elevation axes meet
- Theoretical start and stop of the range time measurement is the time of the laser pulse as it crosses the invariant point
- The distance to the satellite is measured from the invariant point
- As azimuth and elevation angles move and the temperature changes, actual origin of the GTA can move around
- To achieve accurate to the millimeter level ranging measurements, the invariant point of the system must be known at all times to within 1 millimeter
- Vector Tie System (VTS) will monitor external points on the gimbal and determine movement
- Movement of the invariant point with respect to these external points is important so the Science Community can fully determine the system's origin at all times



- Gimbal Stability and Stiffness
 - Invariant point knowledge to meet range measurement uncertainty requirement
 - Tight pointing capability to meet target tracking requirements
 - Day/night operations required over large temperature swings
 - Operational range -40°C to +50°C
 - Survival Temperature: -50°C to 55°C
 - Solar and wind loading managed using a open slit dome
- High Reliability
 - 24/7 continuous operations with minimum downtime
 - Gimbal design must be very robust and require little maintenance to achieve automation

VENDOR SELECTION


Vendor Selected

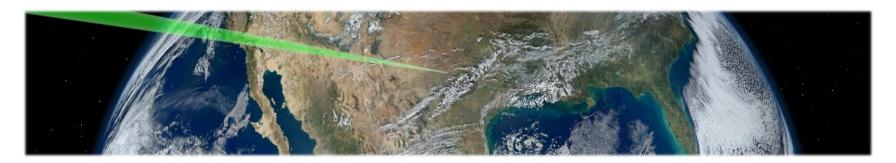
COBHAM

- Selected as the Vendor for the SGSLR Gimbal Telescope

Assembly

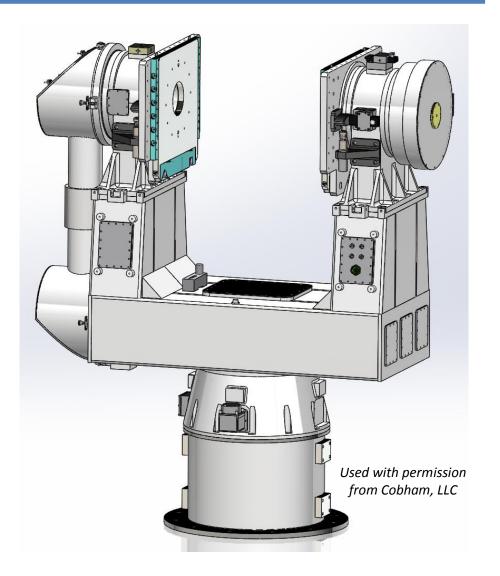
Used with permission from Cobham, LLC

NASA tasked Honeywell to


 Develop a procurement strategy and RFP with a team of subject matter experts (NASA, Honeywell, Sigma Space) to procure 3 GTA's

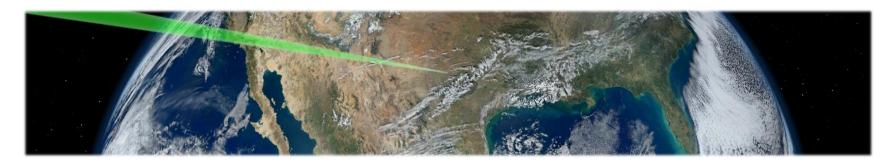
Key Dates

- RFP Released May 2015
- Cobham Selected as SGSLR GTA Vendor November 2015
- Cobham Preliminary Design Review March 2016
- Cobham Critical Design Review August 2016
- First GTA delivery expected July 2017
- Final GTA delivery expected November 2017

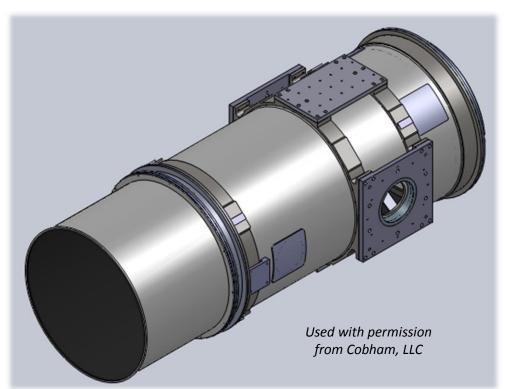

DESIGN STATUS GIMBAL

Gimbal Design

- Steel and ductile iron casting construction (with corrosion protection) for thermal stability
- Slotless, brushless, frameless torque motors
- Angular contact bearing in a kingpost arrangement
- Modularized inductosyn and resolver encoder package
- Enclosed coudé path
- Over travel shock absorbers, elevation
- Manual brakes in azimuth and elevation

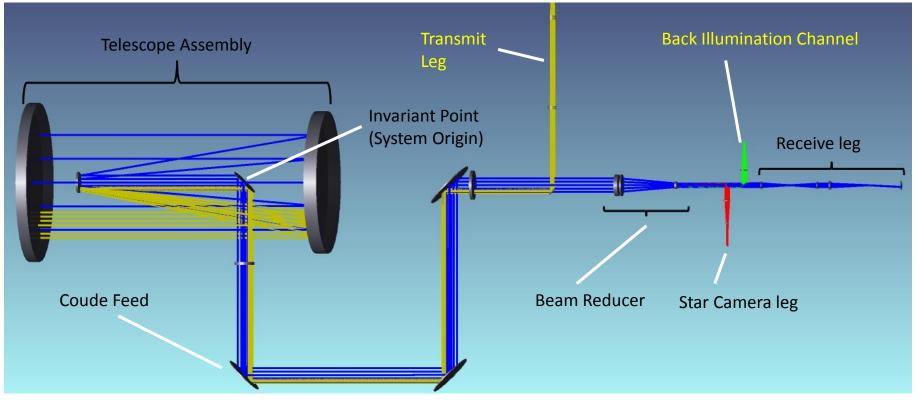

Gimbal Primary Specifications

Specification	Allocation
Jitter:	1 arcsec RMS
Absolute open loop pointing:	≤ 3 arcsec RMS
Invariant Point:	1mm in 3D space
Tracking Az Velocity:	0°– 10°/sec
Tracking Az Acceleration:	0°– 1°/sec ²
Tracking El Velocity:	0°– 2°/sec
Tracking El Acceleration	0°– 0.5°/sec ²
Slew Az Velocity:	≥20°/sec
Slew Az Acceleration:	≥5°/sec ²
Slew El Velocity:	≥20°/sec
Slew El Acceleration:	≥5°/sec ²



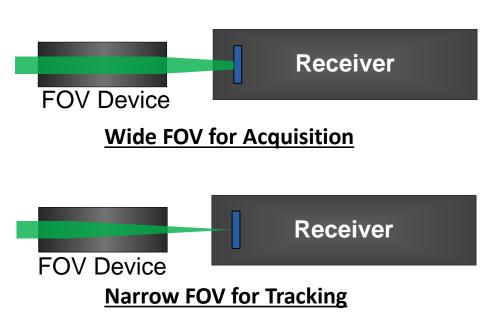
DESIGN STATUS OPTICAL

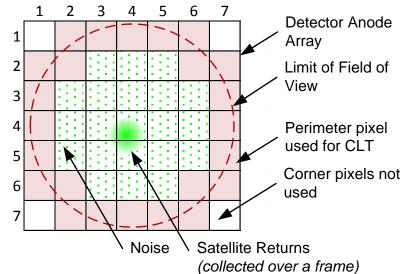
- Theoretical performance analyzed by the NASA/Honeywell/Sigma Space team optical subject matter experts
- Diffraction limited performance over the full field and temperature range
- A-focal design
- Carbon fiber tube
- Sealed System



Specification	Allocation
Туре:	A-focal, Monostatic
Diameter:	0.5 meters
Wavelength:	532nm, 1064nm, 1550nm, Broadband
Throughput:	<2% loss per surface
Stray Light Rejection:	10 ⁶ 9.5° to 85° acceptance angle
System FOV: Acquisition Tracking Star Calibration	60 arcsec 14 arcsec 2.5 arcmin
Telescope and Relay Path:	Sealed
Wavefront Quality:	80% encircled energy for 0.8 arcsec diameter full field circle @ 532nm

Simplified Optical System Layout


- Classic Coudé feed
- Rotational axes and mechanical axes are co-aligned
- Transmit and receive path are coupled using an insertion fold mirror
- A beam illumination path to perform boresight using GSE equipment



Closed loop tracking

- Signal Identification (esp. for weak GNSS returns)
- Automatically maximize return signal
- Decrease acquisition time

Please see John Degnan's presentation "Progress on the multifunctional range receiver for SGSLR"

SUMMARY

Summary

- GTA is one of the most important components of the SLR system
- GTA will be robust to support 24/7 tracking operations
- SGP project level requirements for data quantity and quality require a precise gimbal and telescope assembly
- GTA performance is key to the data volume
 - Tracking performance (extremely good tracking RMS up to relatively high velocities and accelerations, slewing speed, and stability throughout large temperature variations) will increase the amount of data collected/data volume and and will also increase the data collection rate, improving the NPT precision

 Knowledge of invariant point is key to getting to the 1 mm ranging level

- Expect to achieve knowledge of the invariant point to 1 mm
- First Cobham GTA delivery expected July 2017 with the final GTA delivery expected November 2017

Thank You!

