

AN UPGRADED SGSLR LINK ANALYSIS WHICH INCLUDES THE EFFECTS OF ATMOSPHERIC SCINTILLATION AND TARGET SPECKLE

John J. Degnan Sigma Space Corporation 20th International Workshop on Laser Ranging GFZ, Potsdam, Germany October10-15, 2016

Link Equation and SGSLR Values

$$n_{s} = \frac{E_{t}}{hv} \eta_{t} \frac{2}{\pi(\theta_{d}R)^{2}} \exp\left[-2\left(\frac{\Delta\theta_{p}}{\theta_{d}}\right)^{2}\right] \left[\frac{1}{1+\left(\frac{\Delta\theta_{j}}{\theta_{d}}\right)^{2}}\right] \left(\frac{\sigma A_{r}}{4\pi R^{2}}\right) \eta_{r} \eta_{c} T_{a}^{2} T_{c}^{2}$$

Reference: J. Degnan, "Millimeter Accuracy Satellite Laser Ranging: A Review", in Contributions of Space Geodesy to Geodynamics: Technology Geodynamics, 25, pp. 133-162, 1993.

VARIABLE	SYMBOL	VALUE	SECTION
Laser Pulse Energy	Et	1.5 mJ	3.0
Laser Repetition Rate	fL	2 kHz	3.0
Transmit Optics Efficiency	η _t	0.766	2.1, 2.2
Receive Optics Efficiency	η _r	0.542	2.1, 2.2
Detector Counting Efficiency	η _c	0.28	2.2
Spectral Filter Efficiency	η _f	0.7	2.2
Effective Receive Aperture	A _r	0.187 m ²	2.8
Tracking Pointing Bias	$\Delta \theta_{p}$	2 arcsec (Sigma Range Receiver)	2.3
Telescope RMS Pointing Jitter	$\Delta \Theta_{j}$	2 arcsec	2.3
Full Transmitter Divergence	$2\theta_d$	28 arcsec (Starlette, LAGEOS)	3.0
		14 arcsec (GNSS)	
Coherence Length	ρ ₀	2.5 cm (Worst Case: GGAO)	2.6.2
Zenith Log Amplitude Variance	C _l ^s (0)	0.054 (Worst Case: GGAO)	2.6.2

Atmospheric Attenuation

The atmospheric attenuation coefficient decreases approximately exponentially with altitude, h, according to the equation

$$\sigma_{atm}(\lambda, V, h) = \sigma_{atm}(\lambda, V, 0) \exp\left(-\frac{h}{h_v}\right)$$

where V is the sea level visibility and $h_v =$ 1.2 km is a visibility scale height. Thus, the one way attenuation from a SLR station at elevation h_g above sea level to a satellite outside the atmosphere is

$$T_{atm}(\lambda, V, h_g) = \exp\left[-\sec\theta_{zen}\int_{h_g}^{\infty}\sigma_{atm}(\lambda, V, h)dh\right]$$
$$= \exp\left[-\sigma_{atm}(\lambda, V, 0)h_v \sec(\theta_{zen})\exp\left(-\frac{h_g}{h_v}\right)\right]$$

*Graph of Sea level attenuation coefficients obtained from R. J. Pressley, Handbook of Lasers, Chemical Rubber Co., Cleveland (1971).

Two-Way Atmospheric Transmission at 532 nm (Worst Case: station at sea level)

Satellite Zenith Angle, deg

Mean Cirrus Cloud Transmission

Experimentally, it is found that the one-way cirrus cloud transmission is given by

$$T_c = \exp\left[-0.14(t\sec\theta_{zen})^2\right]$$

where t is the cirrus cloud thickness. Typically, cirrus clouds are present about 50% of the time above most locations. The probability of having a certain thickness is given by the plot on the left and the computation of the mean two-way cirrus transmissions on the right . The computation of the mean includes the assumption that there are no cirrus clouds (i.e. $T_c = 1$) 50% of the time.

Atmospheric Turbulence

Atmospheric turbulence affects return signal strength in three ways:

- 1. Beam Wander random translations of the spatial centroid of the beam generally caused by beam passage through large turbulent eddies
- 2. Beam Spread short term growth in the effective beam divergence produced by smaller eddies in the beam path
- Scintillation or "beam fading" responsible for the familiar "twinkling" of starlight

Effects 1 and 2 are often discussed together in terms of a "long term beam spread" defined as

$$\left\langle \theta_{L} \right\rangle = \theta_{d} \sqrt{1 + \left(\frac{\omega_{0}}{\rho_{0}}\right)^{2}} = \frac{M^{2} \lambda}{\pi \omega_{0}} \sqrt{1 + \left(\frac{\omega_{0}}{\rho_{0}}\right)^{2}} = \frac{M^{2} \lambda}{\pi} \sqrt{\frac{1}{\omega_{0}^{2}} + \frac{1}{\rho_{0}^{2}}} \approx \frac{M^{2} \lambda}{\pi \rho_{0}} \text{ for } \omega_{0} \gg \rho_{0}$$

where θ_d is the transmitter beam half-divergence angle out of the telescope, $\omega_0 = M_T \omega_L$ is the Gaussian beam radius at the telescope exit aperture, and ρ_0 is the "transverse atmospheric coherence length" defined by

$$\rho_0 = \left\{ 1.46k^2 \int_{h_s}^{h_{\rm lim}} dh C_n^2(0) m^{-2/3} \right\}^{-3/5}$$

and $C_n^2(0)$ is the "optical strength variance"

6

Log Amplitude Variance and Uplink Scintillation PDF ²

$$p_{A}(J,\theta_{z}) = \frac{1}{2J\sqrt{2\pi}C_{l}^{s}(\theta_{z})} \exp\left\{\frac{-\left[\frac{1}{2}\ln\left(\frac{J}{\langle J(\theta_{z})\rangle}\right) + C_{l}^{s}(\theta_{z})\right]}{2C_{l}^{s}(\theta_{z})}\right\}$$

$$C_{l}^{s}(\theta_{z}) = 0.56k^{7/8}R\int_{0}^{1}C_{n}^{2}(\xi R)|1-\xi|^{5/3}(\xi R)^{5/6}d\xi = Uplink \xi^{0} Downlink \xi^{1} k=2\pi/\lambda$$

$$0.56k^{7/8}(\sec \theta_{z})^{11/6}\int_{h_{s}}^{h_{tim}}C_{n}^{2}(h)(h)^{5/6}dh = C_{l}^{s}(0)(\sec \theta_{z})^{11/6}$$

1

Uplink Scintillation PDF vs Satellite Zenith Angle

Fraction of Mean Photoelectrons Detected, n/ns

Combined Scintillation and Speckle PDF

$$p_T(n,\theta_z) = \frac{1}{2y(C-1)!\sqrt{2\pi C_l^s(\theta_z)}} \int_0^\infty \left(\frac{yC}{x}\right)^C \exp\left(-\frac{yC}{x}\right) \exp\left[-\frac{\left(\frac{1}{2}\ln(x) + C_l^s(\theta_z)\right)^2}{2C_l^s(\theta_z)}\right]^d dx$$

C = nominal number of retroreflectors aperture averaged at the receiver.

X = irradiance/mean irradiance at satellite; y = fraction of mean photoelectrons detected in the absence of scintillation

Figure 12: Combined scintillation and speckle PDF as a function of $y = n/n_s$ and four satellite zenith angles - $\theta z = 0$ (red), 40 (blue), 60 (green) and 80 degrees (black) . (a) Starlette (C=2) ; (b) LAGEOS (C =10).

Combined Effects of Uplink Scintillation and Target Speckle

Figure 13: (a) The probability of detecting the signal from LAGEOS (C=10) at GGAO (worst case) due to the combined effects of uplink atmospheric scintillation and target speckle if, in the absence of scintillation and speckle, the ground signal strength is $n_s = 1(red)$, 3 (blue), 5 (green), or 10 photoelectrons. (b) The probability of detection relative to the zero scintillation, zero speckle case. Figure 13(b) represents an additional loss in the link equation given by Eq. (1).

Detection Probability and Normal Point Precision

For a SLR system with a single photon detection threshold, the probability of detecting the satellite signal is

$$P_d = 1 - \exp(-n_s) \cong n_s$$

where the approximation holds for $n_s << 1$. Thus, the number of range measurements contributing to a satellite "normal point" is

$$N = P_d f_L \tau_{np} = \left(1 - e^{-n_s}\right) f_L \tau_{np}$$

where

 f_{L} = the laser repetition rate = 2 kHz

 τ_{np} = the normal point time interval

and the desired normal point precision is equal to

$$\sigma_{np} = \frac{\sigma_{ss}}{\sqrt{N}} = \frac{1}{\sqrt{N}} \sqrt{\sigma_L^2 + \sigma_D^2 + \sigma_{ET}^2 + \sigma_S^2} \approx 1mm$$

where σ_{ss} is the satellite-dependent , Single Shot range precision obtained from the contributions of the laser (L), detector (D), Event Timer (ET), and Satellite (S). Thus, the integration time required to generate a normal point with normal point precision σ_{np} is

$$\tau_{np} = \frac{N}{\left(1 - e^{-n_s}\right)f_L} = \frac{1}{\left(1 - e^{-n_s}\right)f_L} \left(\frac{\sigma_{ss}}{\sigma_{np}}\right)^2$$

Starlette Link

Figure 17 : Starlette results for a 28 arcsec full width transmitter divergence from a worst case site near Mean Sea Level (e.g. GGAO) as a function of satellite zenith angle and atmospheric quality (Extremely Clear to Light Haze) : (a) Mean Probability of Detection per Pulse; (b) Time required to create 1 mm normal point in seconds. The horizontal dashed red line in Fig. 17(b) marks the 30 second integration time established by the ILRS for most LEO satellites.

LAGEOS Link

Figure 18: LAGEOS results for a 28 arcsec full width transmitter divergence from a worst case site near Mean Sea Level (e.g. GGAO) as a function of satellite zenith angle and atmospheric quality (Extremely Clear to Light Haze) : (a)Mean Probability of Detection per Pulse; (b) Time required to create 1 mm normal point in seconds. The horizontal dashed red line in Fig. 18(b) marks the 120 second integration time established by the ILRS for the two LAGEOS satellites.

GNSS Link

Figure 19: GNSS results for a 14 arcsec full width transmitter divergence from a worst case site near Mean Sea Level (e.g. GGAO) as a function of satellite zenith angle and atmospheric quality (Extremely Clear to Light Haze) : (a)Mean Probability of Detection per Pulse; (b) Time required to create 1 mm normal point in seconds. The horizontal dashed red line in Fig. 17(b) marks the 300 second integration time established by the ILRS for GNSS satellites.

Summary

The SGSLR link analyses presented considered the following effects:

- 1. SLR System
 - laser energy (1.5 mJ) and fixed beam divergence (14 for GNSS or 28 arcsec for Starlette and LAGEOS)
 - detector PDE (~28%)
 - transmit (77%) and receive (54%) optical throughput efficiencies, spectral filter (70%) and obscurations (secondary mirror and transmit injection mirror)
 - telescope pointing bias and jitter (2 arcsec each during tracking with automated pointing correction –next talk)
- 2. Target
 - Optical cross-section (from ILRS tables/recommendations)
 - Target speckle effects
- 3. Atmosphere
 - Atmospheric transmission vs ground visibility extremely clear (60 km), standard clear (23 km), clear (15 km) and light fog (8 km)
 - Mean cirrus cloud transmission
 - Worst case atmospheric turbulence effects (GGAO): short and long term beam wander, uplink scintillation (downlink is negligible)
 - Telescope aperture averaging of target speckle effects.

The wide variation in signal strength as a function of satellite zenith angle suggests reducing the beam divergence at low elevation angles in order to increase the data rate and reduce the normal point integration time.