Lunar Dynamical Modeling with Improved IR Lunar Laser Ranging data

V.Viswanathan^[1,2], A.Fienga^[1], H.Manche^[2], C.Courde^[1], <u>A. Belli</u>^[1,3], J.M.Torre^[1], P.Exertier^[1], J.Laskar^[2]

> 20th International Workshop on Laser Ranging October 09-14, 2016 Potsdam, Germany

- (1) Observatoire de la Côte d'Azur, CNRS-Géoazur, OCA
- (2) Observatoire de Paris, CNRS-IMCCE, PSL
- (3) UTINAM/Université de Franche Compté

Overview

- 1. New Dataset
 - IR (1064nm) Lunar Laser Ranging at OCA
 - advantages
 - impact on tests of general relativity
- 2. Improved dynamical model
 - INPOP Planetary and Lunar Ephemeris
 - description
 - latest residuals comparison with DE430 ephemeris
 - preliminary estimates
- 3. Conclusion + Future work
 - Multitechnique at MeO-OCA
 - SLR + LLR
 - Hydrology loading

Improved IR LLR data

- LASER : Infrared wavelength (1064nm)
- Advantages^[7]:
 - ✓ Better atmospheric transmission
 - ✓ Observations round the clock (high SNR)
 - ✓ Diversification of observed reflectors

Improved IR LLR data

- LASER : Infrared wavelength (1064nm)
- Advantages^[7]:
 - ✓ Better atmospheric transmission
 - ✓ Observations round the clock (high SNR)
 - ✓ Diversification of observed reflectors
 - ✓ Observations during new and full moon

Maximum sensitivity for tests of **EP** : **cos(D)**

Improved IR LLR data

- LASER : Infrared wavelength (1064nm)
- Advantages^[7]:
 - ✓ Better atmospheric transmission
 - ✓ Observations round the clock (high SNR)
 - ✓ Diversification of observed reflectors
 - ✓ Observations during new and full moon
 - ✓ Dense observations

Lunar Dynamical model

INPOP

Intégrateur Numérique Planétaire de l'Observatoire de Paris

- Uses Numerical integration of the (Einstein-Imfeld-Hoffmann, c⁻⁴ PPN approximation) equations of motion
- Adams-Cowell integrator in extended precision
- 8 planets + Pluto + Moon + asteroids (point-mass, ring), GR, J^{sun}, Earth rotation (Euler angles)

$$\ddot{x}_{Planet} = \sum_{A \neq B} \mu_B \frac{r_{AB}}{\|r_{AB}\|^3} + \ddot{x}_{GR}(\beta, \gamma, c^{-4}) + \ddot{x}_{AST,300} + \ddot{x}_{J_2^{\odot}}$$

- Moon: orbit and librations
- Simultaneous numerical integration TT-TDB, TCG-TCB
- Fit to observations in ICRS over 1 cy (1914-2016)
- GAIA ESA planetary ephemerides
- Asteroid physics, Tests of gravity, solar physics

INPOP15b Lunar dynamical model description:

Simplified, differentiated **2 layer** model

- a. Solid mantle
- b. Liquid core :
 - Axial symmetry (C22 Core = 0)
 - Non-differential rotation
 - Shape constrained by core-mantle boundary

Perturbations on lunar orbit :

- **a.** Interaction Moon's figure and point masses :
 - Earth, Sun, Venus, Jupiter
- **b.** Interaction Earth's figure and point masses :
 - Moon, Sun, Venus, Jupiter
- **c.** Interaction <u>distorted</u> part of Earth and Moon : (acceleration + 5 time delays)
 - Distortions:
 - Solid tides raised by Moon and Sun
 - Deformation due to spin
 - Force exerted on the Moon

Interactions at Lunar Core-Mantle Boundary (CMB) :

- ✓ Dissipation : Viscous drag of core fluid flowing past boundary
 - Torque on the mantle due to coupling (no topography at CMB)

Illustration Credit: LPI

LLR Reduction Model

Calern : A Multi-Technique Station

- GINS Reduction Model
- Calern => SLR + LLR
- GINS allows SLR + LLR processing
- Calibration of SLR/LLR reduction procedure with LAGEOS
- Under study : Hydrology loading and horizontal gradients in the troposphere

What is **GINS**?

(Géodésie par Intégrations Numériques Simultanées)

- Precise Orbit determination applied to space geodesy
- Developed and maintained by OCA-GRGS-CNES
- Time of flight (photon) to Residuals
- Planetary and lunar ephemeris (libration angles)
- Earth orientation (IERS C04 / JPL KEOF)
- Tides and loading
- Tropospheric delay
- Crustal deformation
 (Love & Shida numbers)
- Relativistic effects
- Under study : Hydrology loading

New solution : INPOP15b

- INPOP dynamical modeling
- fitted over LLR observations 1969-2016
- inclusion of IR LLR dataset
- GINS LLR reduction model
- Model differences between DE430 and INPOP

	DE430 ^{[1][2]}	INPOP13c ^[3]	INPOP15b*
Shape of Moon	C20 $\beta = (C-A)/B$ $\gamma = (B-A)/C$ C22 (derived) C/MR ² (derived)	C20 C22 C/MR ²	C20 C22 C/MR ²
Shape of fluid core	CMB flattening f	-	C20 Core C/MR ² Core
Fluid Moment ratio	fixed	-	derived from: C/MR ² , f and C20 Core
Symmetry of core	Axisymmetric	-	Axisymmetric
Additional longitude libration (Δτ)	A1 A2 A3	-	-
Lunar Gravity field	GRAIL660b ^[5]	LP150 ^[4]	GRAIL660b ^[5]

Post-fit residual comparison : INPOP15b vs DE430 (5 sigma filtered)

CALERN station (Green)

20th International Workshop on Laser Ranging, Potsdam - Germany, October 09-14, 2016

Post-fit residual comparison : INPOP15b vs DE430 (5 sigma filtered)

Post-fit residual comparison : INPOP15b vs DE430 (5 sigma filtered)

OCA IR Post-fit Residuals

Preliminary estimates with formal uncertainties from INPOP15b WLS fit

Parameter	INPOP15b	DE430 ^{[1][2]}
Radius Moon km	1.738E+03	1.738E+03
EMRAT	81.3005718	81.3005691±0.0000024
GM EMB	8.99701141E-10	8.99701139E-10
k2 Moon	2.545E-02 ± 2E-05	2.4059E-02
h2 Moon	4.315E-02 ± 9.9E-05	4.76E-02 ± 6.4E-03
l2 Moon	1.070E-02	1.070E-02
C/MR2 Moon	3.9313E-01 ± 1.331E-06	3.93142E-01
Gravity field coefficients	GRAIL 660b (BVLS 2 x sig)	GRAIL 660b
C(2,0) Core	-4.74E-08 ± 3.052E-10	-6.78E-08 (computed)
C/MR2 Core	2.75E-04	2.75E-04 (computed)
K CMB	6.20E-09 ± 1.167E-11	6.43E-09
Angular velocities	6.241E-03 ± 2.544E-06	-2.4199E-03
	-5.136E-04 ± 1.232E-06	4.110195E-01
	-1.89E-04 ± 5.090E-06	-4.630947E-01
Cf/C ratio	7.0E-04	7.0E-04

Current assumptions

- Axial symmetry of liquid core
- Non-differential rotation
- Shape constrained by CMB
- Only viscous drag at CMB
- No topography at CMB

References :

[1] Folkner, W. M. et al (2014)
 [2] Williams, J. G. et al (2014)
 [3] Fienga, A. et al (2014)
 [4] Konopliv, A. et al (2001)
 [5] Konopliv, A. et al (2013)
 [6] Viswanathan, V. et al (2016)
 [7] Courde, C. et al (2016*)
 [8] Wieczorek, M. et al (2016)

*bold : fixed parameters

Conclusion and Future Work

✓ Reduction model

- Hydrology loading EOST/IPGS Loading service
- Tropospheric delay
 - Horizontal gradients
- ✓ Multi-technique
- Calern : SLR, LLR, GPS
- **Normal point** \checkmark computation algorithm
- Semi-train accumulation

Thank you for your attention

Questions? viswanat@geoazur.unice.fr

OCA LLR Distribution: http://www.geoazur.fr/astrogeo/?href=observations/donnees/lune/