Determining parameters of Moon's orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models

Dmitry A. Pavlov¹, James G. Williams², <u>Vladimir V. Suvorkin¹</u>

¹ Institute of Applied Astronomy RAS
 ² Jet Propulsion Laboratory, California Institute of Technology

Lunar laser location and ephemerides

Model of orbital motion(I)

- Einstein-Infeld-Hoffmann relativistic equations of motion
- IERS 2010 recommended conventional Geopotential model based on EGM2008, truncated to 6
- Earth acceleration in Moon's gravity field: GL660b (result of GRAIL mission) with some corrections.

$$\begin{split} \vec{a}_A &= \sum_{B \neq A} \frac{Gm_B \vec{n}_{BA}}{r_{AB}^2} \\ &+ \frac{1}{c^2} \sum_{B \neq A} \frac{Gm_B \vec{n}_{BA}}{r_{AB}^2} \left[v_A^2 + 2v_B^2 - 4(\vec{v}_A \cdot \vec{v}_B) - \frac{3}{2} (\vec{n}_{AB} \cdot \vec{v}_B)^2 \right. \\ &- 4 \sum_{C \neq A} \frac{Gm_C}{r_{AC}} - \sum_{C \neq B} \frac{Gm_C}{r_{BC}} + \frac{1}{2} ((\vec{x}_B - \vec{x}_A) \cdot \vec{a}_B) \right] \\ &+ \frac{1}{c^2} \sum_{B \neq A} \frac{Gm_B}{r_{AB}^2} \left[\vec{n}_{AB} \cdot (4\vec{v}_A - 3\vec{v}_B) \right] (\vec{v}_A - \vec{v}_B) \\ &+ \frac{7}{2c^2} \sum_{B \neq A} \frac{Gm_B \vec{a}_B}{r_{AB}} + O(c^{-4}) \end{split}$$

$$\frac{\mathbf{f}_{\text{fig-pm}}}{m} = \mu \text{Re} \left[\sum_{n=0}^{n_{\text{max}}} R^n \sum_{m=0}^n (\bar{C}_{\text{nm}} - i\bar{S}_{\text{nm}}) \nabla \bar{V}_{\text{nm}}(r, \lambda, \phi) \right]$$
$$\bar{V}_{\text{nm}}(r, \lambda, \phi) = N_{\text{nm}} \frac{\cos m\lambda + i\sin m\lambda}{r^{n+1}} P_n^m(\sin \phi)$$
$$N_{\text{nm}} = \sqrt{\frac{(n-m)!(2n+1)!(2-\delta_{0m})}{(n+m)!}}$$

- Table 6.2: Low-degree coefficients of the conventional geopotential model Coefficient Value at 2000.0 Reference Rate / yr^{-1} Reference \bar{C}_{20} (zero-tide) $-0.48416948 \times 10^{-3}$ Cheng *et al.*, 2010 11.6×10^{-12} Nerem et al., 1993 \bar{C}_{30} 0.9571612×10^{-6} EGM2008 4.9×10^{-12} Cheng et al., 1997 0.5399659×10^{-6} 4.7×10^{-12} \bar{C}_{40} EGM2008 Cheng et al., 1997
- Accelerations from Earth, Sun, Venus, Jupiter, Mercury and Mars in Moon's gravity field

Model of orbital motion (II)

Tidal perturbations on Earth act on Moon's orbit.

IERS2010 model: perturbed Geopotential (2nd degree).

$$\begin{split} \Delta \bar{C}_{\rm nm,E} - i\Delta \bar{S}_{\rm nm,E} &= \frac{k_{\rm nm}}{2n+1} \sum_{j=M,S} \frac{\mu_j}{\mu_E} \left(\frac{R_E}{r_j}\right)^{n+1} \bar{P}_{\rm nm}(\sin \Phi_j) e^{-im\lambda_j} \\ \Delta \bar{C}_{20}^{\rm (fd)} &= {\rm Re} \sum_f (A_0 \delta k_f H_f) e^{i\theta_f} \\ \left\{ \begin{aligned} \Delta \bar{C}_{21}^{\rm (fd)} - i\Delta \bar{S}_{21}^{\rm (fd)} &= -i\sum_f (A_1 \delta k_f H_f) e^{i\theta_f} \\ \Delta \bar{C}_{22}^{\rm (fd)} - i\Delta \bar{S}_{22}^{\rm (fd)} &= \sum_f (A_2 \delta k_f H_f) e^{i\theta_f} \end{aligned} \right. \begin{aligned} A_0 &= \frac{1}{R_E \sqrt{4\pi}}, \\ A_m &= \frac{(-1)^m}{R_E \sqrt{8\pi}}, \qquad (m = 1, 2). \end{aligned}$$
$$\Delta \bar{C}_{\rm nm}^{\rm (ocean)} - i\Delta \bar{S}_{\rm nm}^{\rm (ocean)} &= \sum_f \sum_{f=+}^{-} (\mathcal{C}_{\rm f,nm}^{\pm} \mp i \mathcal{S}_{\rm f,nm}^{\pm}) e^{\pm i\theta_f} \end{split}$$

DE430 model: acceleration with delay on rotation and orbit

$$\frac{\Delta \boldsymbol{f}}{m} = \frac{3\mu_E}{2} \left(\frac{R_E}{r}\right)^5 \left[\frac{k_{20}}{r_0^{*5}} \left(\left(2z_0^{*2}\boldsymbol{z} + \rho_0^{*2}\boldsymbol{\rho}\right) - 5\frac{(zz_0^{*})^2 + \frac{1}{2}(\rho\rho_0)^2}{r^2}\boldsymbol{r} + r_0^{*2}\boldsymbol{r}\right)\right] + \frac{k_{21}}{r_1^{*5}} \left(2\left((\boldsymbol{\rho} \cdot \boldsymbol{\rho}_1^{*})\boldsymbol{z}_1^{*} + zz_1^{*}\boldsymbol{\rho}_1^{*}\right) - \frac{10zz_1^{*}(\boldsymbol{\rho} \cdot \boldsymbol{\rho}_1^{*})\boldsymbol{r}}{r^2}\right) + \frac{k_{22}}{r_2^{*5}} \left(2(\boldsymbol{\rho} \cdot \boldsymbol{\rho}_2^{*})\boldsymbol{\rho}_2^{*} - \rho_2^{*2}\boldsymbol{\rho} - 5\frac{(\boldsymbol{\rho} \cdot \boldsymbol{\rho}_2^{*})^2 - \frac{1}{2}(\rho\rho_2^{*})^2}{r^2}\boldsymbol{r}\right)\right] + \frac{k_{22}}{r_2^{*5}} \left(2(\boldsymbol{\rho} \cdot \boldsymbol{\rho}_2^{*})\boldsymbol{\rho}_2^{*} - \rho_2^{*2}\boldsymbol{\rho} - 5\frac{(\boldsymbol{\rho} \cdot \boldsymbol{\rho}_2^{*})^2 - \frac{1}{2}(\rho\rho_2^{*})^2}{r^2}\boldsymbol{r}\right)\right]$$

DE model of physical libration

Moon with fluid core

Corrections of LLR-observations

- Equations for light travel time:

 $\begin{cases} t_2 - t_1 = \frac{|\boldsymbol{l}_{\text{BCRS}}(t_2) - \boldsymbol{s}_{\text{BCRS}}(t_1)|}{c} + \Delta_{\text{grav}}(t_1, t_2) + \Delta_{\text{atm}}(t_1, t_2) \\ t_3 - t_2 = \frac{|\boldsymbol{s}_{\text{BCRS}}(t_3) - \boldsymbol{l}_{\text{BCRS}}(t_2)|}{c} + \Delta_{\text{grav}}(t_3, t_2) + \Delta_{\text{atm}}(t_3, t_2) \end{cases}$

- Signal relativistic delay (Kopeikin, 1990);
- Tropospheric delay (Mendes, Pavlis, 2004);
- UTC to TDB transformation, integrated with EPM ephemerides;

$$\begin{aligned} TDB - TT &= \frac{L_G - L_B}{1 - L_B} (TDB - T_0) + \frac{1 - L_G}{1 - L_B} TDB_0 \\ &+ \frac{1 - L_G}{1 - L_B} \int_{T_0 + TDB_0}^{TDB} \frac{1}{c^2} \left(\frac{v_E^2}{2} + w_{0E} + w_{LE} \right) dt + \frac{1}{c^2} \mathbf{v}_E \cdot (\mathbf{r}_S - \mathbf{r}_E) \\ &- \frac{1 - L_G}{1 - L_B} \int_{T_0 + TDB_0}^{TDB} \frac{1}{c^4} \left(- \frac{v_e^4}{8} - \frac{3}{2} v_E^2 w_{0E} + 4 \mathbf{v}_E \cdot \mathbf{w}_{AE} + \frac{1}{2} w_{0E}^2 + \Delta_E \right) dt \\ &+ \frac{1}{c^4} \left(3w_{0E} + \frac{v_E^2}{2} \right) \mathbf{v}_E \cdot (\mathbf{r}_S - \mathbf{r}_E) \end{aligned}$$

$$C = t_3 - t_1 + TT \text{minusTDB}(t_3) - TT \text{minusTDB}(t_1) \\ &+ \frac{\dot{\mathbf{r}}_E(t_1) \cdot \mathbf{s}_{\text{GCRS}}(t_1)}{c^2} - \frac{\dot{\mathbf{r}}_E(t_3) \cdot \mathbf{s}_{\text{GCRS}}(t_3)}{c^2} + b \end{aligned}$$

- Transformation of TDB to TT;
- Unmodeled shifts.

(picture by H. Manche)

Corrections of LLR-observations (II)

- − CRS→TRS according to IAU2000/2006 and EOP from IERS C04 (+ KEOF) series;
- Station positions shifts: solid (Dehant, Matthews, 2000), ocean (FES2004) and polar tides;
- Relativistic transformation of positions of stations and reflectors to BCRS;
- Lunar solid tides from Earth and Sun.

 $\boldsymbol{s}_{ ext{GCRS}} = R_{ ext{T2C}} \, \boldsymbol{s}_{ ext{TRS}} + \boldsymbol{\Delta}_{ ext{pole}} + \boldsymbol{\Delta}_{ ext{solid}} + \boldsymbol{\Delta}_{ ext{ocean}}$

$$oldsymbol{s}_{
m BCRS} = oldsymbol{r}_E + oldsymbol{s}_{
m GCRS} \left(1 - rac{U_E}{c^2}
ight) - rac{1}{2} \left(rac{\dot{oldsymbol{r}}_E \cdot oldsymbol{s}_{
m GCRS}}{c^2}
ight) \dot{oldsymbol{r}}_E$$

$$\begin{split} \boldsymbol{\Delta}_{\text{solidmoon}} &= \frac{\mu_A l^4}{\mu_M r_{\text{MA}}^3} \left[3l_2 \left(\hat{\boldsymbol{r}}_{\text{MA}} \cdot \hat{\boldsymbol{l}} \right) \hat{\boldsymbol{r}}_{\text{MA}} \right. \\ &+ \left(3 \left(\frac{h_2}{2} - l_2 \right) \left(\hat{\boldsymbol{r}}_{\text{MA}} \cdot \hat{\boldsymbol{l}} \right)^2 - \frac{h_2}{2} \right) \hat{\boldsymbol{l}} \right] \\ \boldsymbol{l}_{\text{BCRS}} &= \boldsymbol{r}_M + \boldsymbol{l}_{\text{LCRS}} \left(1 - \frac{U_M}{c^2} \right) - \frac{1}{2} \left(\frac{\dot{\boldsymbol{r}}_M \cdot \boldsymbol{l}_{\text{LCRS}}}{c^2} \right) \dot{\boldsymbol{r}}_M \\ \boldsymbol{l}_{\text{LCRS}} &= R_{\text{L2C}} \, \boldsymbol{l}_{\text{PA}} + \boldsymbol{\Delta}_{\text{solidmoon}}^{(E)} + \boldsymbol{\Delta}_{\text{solidmoon}}^{(S)} \end{split}$$

Unmodeled effects

Longitude libration in MER

 $\Delta A = A_1 \cos l' + A_2 \cos(2l - 2D) + A_3 \cos(2F - 2L)$

l' – Sun mean anomaly, l – Moon mean anomaly, D – elongation of Moon from Sun, F – argument of latitude.

MER → PA:

$$R_{\text{libr}}(\Lambda) = R_x(-\delta_x)R_y(-\delta_y)R_z(\Lambda)R_y(\delta_y)R_x(\delta_x) \approx R_z(\Lambda)$$

Eccentricity rate (extra de/dt)

From analytic theory (Chapront-Touzé, Chapront 1988):

$$\mathrm{d}A/\mathrm{d}e \approx -\frac{20905.4}{e} \cos l - \frac{3699.1}{e} \cos(2D-l) \approx -380791 \cos l - 67379 \cos(2D-l)$$

Effects in Moon's inner structure

 C_{32} , S_{32} , C_{33} are estimated, not taken from GL660b.

Implementations of JPL and IAA

	JPL	IAA RAS
Earth rotation	Modified IAU1980 with additional estimated parameters, JPL KEOF series	IAU2000/2006 (SOFA), EOP C04 series (KEOF before 1984)
Geopotential	EGM2008 (?) with modified C ₂₀	The same + IERS conventional model (EGM2008-based)
Tidal orbit perturbations	Simplified with 3 fixed and 2 estimated parameters	The same + additional solution with IERS2010 (up to 2 degree)
Moon gravitational potential	Solution close to GL660b; C21 = S21 = S22 = 0 with additional periodical variations. C32, S32, C33 are estimated.	The same
Solar system	DE430	EPM

Estimated parameters

Initial parameters (15)

- Moon position and velocity (x, y, z, x, y, z)
- Initial libration angles (ϕ , θ , ψ) and their rates
- Angular velocity of fluid core (ω_c)

Dynamical parameters (9)

- Sum of GM of Earth and Moon
- Inertia parameters β = (C A)/B, γ = (B A)/C
- Tidal delay $\boldsymbol{\tau}$
- Moon's potential coefficients C₃₂, S₃₂, C₃₃
- Oblateness of fluid core f_c , friction parameter k_v/C

Reduction parameters (72)

- Positions of 5 reflectors and 7 sites
- Velocities of CERGA and Apache/McDonald/MLRS1/MLRS2
- $-h_2$ of Moon
- Amplitudes of additional terms in libration ψ : cos *l*', cos(2*l*-2*D*), cos(2*F*-2*l*)
- 28 station biases

All parameters of dynamical model

Notation	parameter	type	notes	β, γ	ratios between undistorted	fit	
μ_S	standard gravitational pa-	fixed	fixed to DE430 value in this		main moments of itertia		
	rameter of the Sun		work; may differ in the EPM	$\bar{C}_{21}, \bar{S}_{21},$	other degree-2 harmonics	fixed	zero; \bar{S}_{21} taken from
			ephemeris	\bar{S}_{22}			GL660b in one solution
μ_E/μ_M	Earth-Moon mass ratio	fixed	determined from spacecraft	$\bar{C}_{32}, \bar{S}_{32},$	some degree-3 harmonics	fit	
			observations; fixed to DE430	\bar{S}_{33}			
			for in FPM	$\bar{C}_{nm}, \bar{S}_{nm}$	other lunar harmonics	fixed	taken from GL660b up to
	standard gravitational pa-	fit					degree 6
$\mu_E + \mu_M$	rameter of the E-M system	110		au	lunar tidal delay	$_{ m fit}$	
Com E.	spherical harmonic coeffi-	fixed	up to $n_{\rm max} = 6$, taken from	f_c	oblateness of the lunar core	$_{ m fit}$	
$\bar{S}_{nm E}$	cients of Earth's gravita-		model based on EGM2008,	k_v/C_T	CMB interaction	$_{ m fit}$	
	tional potential		see section 6.1 of Conven-	α_c	core polar moment / undis-	fixed	DE430 fixed value 0.0007
	-		tions; DE tidal model comes		torted total polar moment		
			with an altered $\bar{C}_{20,E}$	A_1, A_2, A_3	unmodeled longitude libra-	$_{ m fit}$	
$k_{20}, k_{21},$	potential degree-2 Love	fixed	in DE tidal model: $k_{20} =$		tion amplitudes		
k_{22}	numbers of Earth zonal,		$0.335, k_{21} = 0.320, k_{22} =$	$l_{\rm PA} (\times 5)$	positions of five lunar	$_{ m fit}$	
	diurnal, and semi-diurnal		0.282; IERS tidal model is		retroreflectors		
	tides		more complex	$m{r}_{ m EM},m{\dot{r}}_{ m EM}$	position and velocity of the	$_{ m fit}$	
$\tau_{00}, \tau_{10},$	orbital delays of Earth	fixed/absent	only in DE tidal model:		Moon w.r.t. Earth in the in-		
τ_{2O}	diurnal tides		$\tau_{00} = 0.0780 \text{ d}, \tau_{10} = 0.44 \text{ d}, \tau_{10} = 0.113 \text{ d}$		ertial frame at epoch		
	rotational delays of Earth	fit/absent	-0.44 d, $7_{20} = -0.113$ d	$\phi, \theta, \psi, \phi,$	Euler angles and their rates	$_{ m fit}$	
/1R, /2R	diurnal semi-diurnal tides	nt/absent	model	θ, ψ	at epoch		
la. ka	degree-2 lunar Shida num-	fixed	taken from GRAIL results	$\boldsymbol{s}_{\mathrm{TRS}}$ (×7),	positions and velocities of	fixed/fit	see Table 4
-2,2	ber and Love number			$\dot{\boldsymbol{s}}_{\mathrm{TRS}}$ (×4)	stations at their epochs		
h_2	degree-2 lunar radial dis-	fit		ω_c	angular velocity of the lunar	$_{ m fit}$	
_	placement Love number				core at epoch	-	
\bar{C}_{20}	undistorted normalized	fixed	taken from GRAIL (solution	$b(\times 28)$	biases	fit	see Table 2
	main zonal lunar harmonic		GL660b)	$\mathrm{d}e/\mathrm{d}t$	extra eccentricity rate	fit/absent	present in some solutions

Parameter	type	notes		
McDonald position	fit	epoch 01.01.1991		
MLRS1 position	fit	epoch 01.01.1991		
MLRS2 position	fit	epoch 01.01.1991		
McDonald, MLRS1,	fit			
MLRS2 velocity				
Apache position	fit	epoch 01.06.2009		
Apache velocity	fixed	GNSS solution (P027): $(-1.35, 0.03, -0.04)^T$ cm/yr		
CERGA position	fit	epoch 01.01.2000		
CERGA velocity	fit			
Haleakala position	fit	epoch 01.04.1986		
Haleakala velocity	fixed	GNSS solution: $(-1.30, 6.16, 3.21)^T$ cm/yr		
Matera position	fit	epoch 01.01.2008		
Matera velocity	fixed	GNSS solution: $(-1.85, 1.86, 1.47)^T$ cm/yr		

Obtained solutions

All the solutions are based on the same set of observations, while differing slightly in dynamical models and determined parameters.

SOLUTION I	DE tidal model , de/dt is absent (close to the original DE430).
SOLUTION le	same as SOLUTION I, but with de/dt fit
SOLUTION II	IERS tidal model, de/dt is absent.
SOLUTION IIe	same as SOLUTION II, but with de/dt fit

One-way wrms in cm

Station	Data span	SOLUTION I		SOLUTION II			
		used	rej.	wrms	used	rej.	wrms
McDonald	1970-1985	3545	59	19.9	3545	59	20.1
MLRS1	1983-1988	587	44	11.0	588	43	11.3
MLRS2	1988-2013	3210	443	3.5	3206	447	3.8
Haleakala	1984-1990	748	22	5.4	750	20	5.8
CERGA (Ruby)	1984-1986	1109	79	17.2	1109	79	17.5
CERGA (YAG)	1987-2005	8272	52	2.3	8271	53	2.4
CERGA (MeO)	2009-2013	645	9	2.2	645	9	2.7
Apache	2006-2012	1546	27	1.4	1549	24	1.5
Matera	2003-2013	64	19	3.8	63	20	3.3

Some other results

Extra de/dt drift: SOLUTION Ie (tidal model DE430):

extra de/dt = $(1.4\pm0.2)\times10^{-12}$ /yr friction parameter $k_v/C_T = (16.3\pm0.2)\cdot10^{-9}$ /day $C_{32} = (14184.3\pm0.3)\cdot10^{-9}$ $S_{32} = (4931.8\pm0.6)\cdot10^{-9}$ $C_{33} = (11975\pm11)\cdot10^{-9}$ SOLUTION IIe (tidal model IERS2010): extra de/dt = $(-1.3\pm0.2)\times10^{-12}$ /yr friction parameter $k_v/C_T = (18.6\pm0.2)\cdot10^{-9}$ /day $C_{32} = (14185.5\pm0.4)\cdot10^{-9}$ $S_{32} = (4937.4\pm0.7)\cdot10^{-9}$ $C_{33} = (11912\pm11)\cdot10^{-9}$

GRAIL values:

 $C_{32} = (14171.5 \times 10^{-9})$ diff < 0.1%</td> $S_{32} = (4878.0 \times 10^{-9})$ diff 0.4-1.2% $C_{33} = (12275 \times 10^{-9})$ diff 3%

Tidal acceleration: SOLUTION I minus SOLUTION II

In lunar PA frame, mm/day², **X** (towards Earth), **Y** and **Z** components:

Apache residuals

CERGA residuals

McDonald, MLRS1, and MLRS2 postfit residuals

Summary

– Full implementation of **DE430 lunar model** was done and built into the **EPM** ephemeris software;

– The conventional EGM2008-based model of Geopotential is suitable for analyzing LLR observations;

- IAU2000/2006 PN + IERS CO4 EOP series are suitable for processing LLR observations (except of IERS CO4 before 1984 – JPL KEOF EOP series used)

- IERS 2010 recommended model of **solid tides** for station displacements, model of **tropospheric delay** are suitable for processing LLR observations.

– Implemented IERS recommended Geopotential perturbations model is slightly worse for LLR compared to DE430 model of tidal acceleration of the orbit of the Moon (probably because of two additional parameters in DE model). Lunar and extra de/dt are very sensitive to the tidal model used (extra de/dt falls from 1.4×10^{-12} with the "DE model" to -1.3×10^{-12} with the "IERS model")

– Towards Earth tidal acceleration is bigger in "IERS" compared to "DE". Probably due to k_{21} in K_1 is smaller than average value used in DE430.

- Strong detection of $\mathbf{k}_v / \mathbf{C}_T$ demonstrates that the Moon has a fluid core.
- Determined C_{32} differs from GL660b by <0.1%; derived C_{22} is also very close to GL660b;
- Determined S_{32} value differs from the GL660b value by 0.4-1.2%;
- Determined C_{33} value differs by about 3% from the GL660b value.

Further plans

- 1. Study of different tropospheric models and ocean loading to observations fit.
- Research the cause of the misalignment of the lunar PA frame in the model with the GRAIL's frame. (non-zero values of C₂₁, S₂₁, S₂₂ in GL660b). Probably a better model is needed.
- 3. Explanation why GRAIL and LLR give different S_{32} , C_{33} .
- 1. Including new observations (next talk, Dr. E. Yagudina), particularly IR(?).

Detailed description of the work:

D.A. Pavlov, J. G. Williams, V. V. Suvorkin: **Determining parameters of Moon's orbital** and rotational motion from LLR observations using GRAIL and IERS-recommended models

Celestial Mechanics and Dynamical Astronomy 126(1), 61-88 (2016)

Thank you for your attention!

Difference to DE430

DE tidal acceleration

In lunar frame, mm/day², X (towards Earth), Y and Z components

Estimated parameters

Parm.	Solution I value	Solution II value	units
$r_{ m EM}$.x	-137136474.08 ± 0.05	-137136473.34 ± 0.06	m
$r_{ m EM}.{ m y}$	-311514604.04 ± 0.05	-311514604.28 ± 0.06	m
$r_{ m EM}$.z	-141738600.42 ± 0.05	-141738600.20 ± 0.05	m
$\dot{r}_{ m EM.x}$	962372276.17 ± 0.15	962372276.40 ± 0.16	$\mu m/sec$
$\dot{r}_{ m EM}.{ m y}$	-375608190.25 ± 0.14	-375608188.58 ± 0.15	$\mu m/sec$
$\dot{m{r}}_{ m EM}.{ m z}$	-268439311.47 ± 0.06	-268439310.20 ± 0.07	$\mu m/sec$
$\dot{\omega}_{c.\mathrm{X}}$	$(-908 \pm 4) \cdot 10^{-6}$	$(-952 \pm 4) \cdot 10^{-6}$	rad/day
$\dot{\omega}_{c}.y$	$(-6378 \pm 8) \cdot 10^{-6}$	$(-6439 \pm 8) \cdot 10^{-6}$	rad/day
$\dot{\omega}_{c.\mathrm{z}}$	$(229.63 \pm 0.05) \cdot 10^{-3}$	$(230.24 \pm 0.02) \cdot 10^{-3}$	rad/day
ϕ	$(-5823794 \pm 2) \cdot 10^{-8}$	$(-5823801 \pm 2) \cdot 10^{-8}$	rad
θ	$(39511623 \pm 1) \cdot 10^{-8}$	$(39511619 \pm 1) \cdot 10^{-8}$	rad
ψ	$(113574558 \pm 3) \cdot 10^{-8}$	$(113574573 \pm 3) \cdot 10^{-8}$	rad
$\dot{\phi}$	-74.538 ± 0.001	-74.544 ± 0.001	″/day
θ	-37.0264 ± 0.0004	-37.026 ± 0.004	″/day
$\dot{\psi}$	47501.855 ± 0.001	47501.860 ± 0.001	″/day
$\mu_E + \mu_M$	403503.2366 ± 0.0002	403503.2360 ± 0.0002	$\rm km^3/s^2$
β	$(631027.9 \pm 0.5) \cdot 10^{-9}$	$(631027.9 \pm 0.5) \cdot 10^{-9}$	1
γ	$(227734.5 \pm 0.7) \cdot 10^{-9}$	$(227735.4 \pm 0.7) \cdot 10^{-9}$	1
τ	0.099 ± 0.001	0.072 ± 0.001	day
τ_{1R}	0.00783 ± 0.0003	N/A	day
τ_{2R}	0.002862 ± 0.00003	N/A	day

f_c	$(0.209 \pm 0.005) \cdot 10^{-3}$	$(0.219 \pm 0.005) \cdot 10^{-3}$	1
k_v/C_T	$(16.2 \pm 0.2) \cdot 10^{-9}$	$(19.9 \pm 0.2) \cdot 10^{-9}$	day^{-1}
h_2	0.042 ± 0.001	0.040 ± 0.001	1
A_1	4.6 ± 0.2	4.6 ± 0.2	mas
A_2	1.8 ± 0.2	1.0 ± 0.2	mas
A_3	-6.7 ± 0.5	-12.3 ± 0.5	mas
\bar{C}_{32}	$(14185.1 \pm 0.4) \cdot 10^{-9}$	$(14186.4 \pm 0.4) \cdot 10^{-9}$	1
S_{32}	$(4930.5 \pm 0.7) \cdot 10^{-9}$	$(4935.0 \pm 0.8) \cdot 10^{-9}$	1
S_{33}	$(11965 \pm 11) \cdot 10^{-9}$	$(11927 \pm 12) \cdot 10^{-9}$	1
A11 x	1591966.95 ± 0.06	1591966.77 ± 0.07	m
A11 y	690699.52 ± 0.04	690699.47 ± 0.05	m
A11 z	21003.76 ± 0.02	21003.80 ± 0.02	m
A14 x	1652689.88 ± 0.07	1652689.71 ± 0.07	m
A14 y	-520997.52 ± 0.04	-520997.66 ± 0.05	m
A14 z	-109730.51 ± 0.02	-109730.48 ± 0.02	m
A15 x	1554678.62 ± 0.07	1554678.41 ± 0.07	m
A15 y	98095.60 ± 0.04	98095.46 ± 0.04	m
A15 z	765005.20 ± 0.03	765005.22 ± 0.04	m
L1 x	1114292.57 ± 0.06	1114292.36 ± 0.07	m
L1 y	-781298.49 ± 0.04	-781298.75 ± 0.04	m
L1 z	1076058.50 ± 0.04	1076058.37 ± 0.04	m
L2 x	1339363.70 ± 0.06	1339363.49 ± 0.07	m
L2 y	801872.00 ± 0.04	801871.94 ± 0.04	m
L2 z	756358.66 ± 0.04	756358.67 ± 0.04	m

Parameter	Solution I value	Solution II value	\mathbf{units}
McD λ	$17.06520015(7 \pm 6)$	$17.06520013(2\pm 2)$	hours
McD $r \cos \phi$	5492414.47 ± 0.03	5492414.45 ± 0.03	m
McD $r \sin \phi$	3235697.50 ± 0.02	3235697.47 ± 0.02	m
MLRS1 λ	$17.06560804(6 \pm 4)$	$17.06560805(1 \pm 4)$	hours
MLRS1 $r \cos \phi$	5492037.72 ± 0.02	5492037.65 ± 0.02	m
MLRS1 $r \sin \phi$	3236146.77 ± 0.01	3236146.77 ± 0.01	m
MLRS2 λ	$17.06565358(3 \pm 1)$	$17.06565358(6 \pm 2)$	hours
MLRS2 $r \cos \phi$	5491888.44 ± 0.01	5491888.44 ± 0.01	m
MLRS2 $r \sin \phi$	3236481.67 ± 0.01	3236481.66 ± 0.01	m
CERGA λ	$0.46143818(5\pm1)$	$0.46143818(3 \pm 1)$	hours
CERGA $r \cos \phi$	4615328.453 ± 0.002	4615328.488 ± 0.002	m
CERGA $r \sin \phi$	4389355.108 ± 0.003	4389355.106 ± 0.003	m

Haleakala λ	$13.58293969(6 \pm 1)$	$13.58293970(6 \pm 2)$	hours
Haleakala $r\cos\phi$	5971474.51 ± 0.01	5971474.53 ± 0.01	m
Haleakala $\sin \phi$	2242.188420 ± 0.01	2242.18845 ± 0.01	m
Apache λ	$16.94530512(0 \pm 1)$	$16.94530511(7\pm1)$	hours
Apache $r \cos \phi$	5370045.374 ± 0.003	5370045.379 ± 0.003	m
Apache $\sin \phi$	3435012.901 ± 0.002	3435012.911 ± 0.002	m
Matera λ	$1.1136409(0 \pm 6)$	$1.1136408(9 \pm 1)$	hours
Matera $r\cos\phi$	4846504.3 ± 0.2	4846504.23 ± 0.05	m
Matera $r\sin\phi$	4133249.59 ± 0.07	4133249.59 ± 0.02	m
McD $\dot{\lambda}$	-0.57 ± 0.1	-0.65 ± 0.01	mas/yr
McD $(r\cos\phi)$	4.4 ± 0.2	2.9 ± 0.2	$\mathrm{mm/yr}$
McD $(r\sin\phi)$	1.7 ± 0.5	0.2 ± 0.5	$\mathrm{mm/yr}$
CERGA $\dot{\lambda}$	0.923 ± 0.008	0.916 ± 0.009	mas/yr
CERGA $(r\cos\phi)$	-15.7 ± 0.2	-16.9 ± 0.2	mm/yr
CERGA $(r \sin \phi)$	14.5 ± 0.4	14.3 ± 0.5	mm/yr

IERS C04 and early LLR observations

misc

Normal points of LLR: <u>http://polac.obspm.fr/llrdatae.html</u>, <u>http://polac.obspm.fr/llrdatae.html</u>, <u>http://physics.ucsd.edu/~tmurphy/apollo/norm_pts.html</u>

Software used: **ERA** (Ephemeris Research in Astronomy), version 8 – Racket programming platform + C Inguage numerical procedures

SOFA library (Hohenkerk 2012; <u>http://www.iausofa.org</u>) for IAU2000/2006 model, conversion of time scales, calculation of Delaunay arguments, and conversion between geocentric and geodetic coordinates.

For optical zenith delay (Mendes and Pavlis 2004) and mapping function (Mendes et al. 2002), **FCULZD HPA** and **FCUL A** routines were used. Station displacement due to solid tides (Mathews et al. 1997) was calculated with the **DEHANTTIDEINEL** package.

For numerical integration, an implementation of Gauss-Everhart algorithm from (Avdyushev 2010) was used, but rewritten from Fortran to C and modified to use extended precision floating-point numbers (80-bit) instead of double precision (64-bit).