

# Ranging the GNSS Constellation

Urs Hugentobler Technische Universität München, Germany

> 20<sup>th</sup> ILRS Workshop Potsdam, October 11, 2016



Institute for Astronomical and Physical Geodesy

# **GPS SLR Residuals**



Institute for Astronomical and Physical Geodesy

20<sup>th</sup> ILRS Workshop, Oct. 11, 2016

#### Influence of Earth Albedo

- Earth albedo causes a radial GNSS orbit error of 1-2 cm
- Antenna thrust causes a radial orbit error at a level of 1 cm



Rodriguez et al., 2010

20th ILRS Workshop, Oct. 11, 2016

3

#### Improvements in Orbit Modeling and LRA Offsets



Urschl et al., 2007



20<sup>th</sup> ILRS Workshop, Oct. 11, 2016

# SLR reveals significant systematic orbit errors

GPS SLR residuals in Sun-fixed reference frame, ROCK radiation pressure a priori model.



Flohrer et al., 2008



#### **Current GPS SLR residuals**

SLR bias below 1 cm for IGS CODE reprocessed orbits





#### What about new GNSS constellations?



Montenbruck et al. 2013



#### SLR Residuals of Galileo IOV Satellites



#### Cause: different shape of satellites



# Galileo SLR residuals





### Galileo SLR residuals



# **Galileo SLR residuals**



#### Classical ECOM radiation pressure model

New ECOM2 radiation pressure model



IGS MGEX project: http://mgex.igs.org/analysis/slrres.php



# **Conclusions 1**

- SLR ranging to GPS and GLONASS has a long history. Independent orbit validation helped to improve orbit models.
- Radiation pressure modelling crucially depends on details of satellite structure and surface properties.
- SLR to satellites of the new GNSS constellations and satellites on new orbit types thus plays an essential role for calibrating such models.
- For GEO the determination of satellite longitude with GNSS tracking data is highly susceptible to biases. SLR can play an important role.
- For IRNSS satellites currently SLR are the only public tracking data allowing the determination of precise orbits.



# Monitoring of Satellite Clock Behaviour



Institute for Astronomical and Physical Geodesy

#### **Gravitational Redshift**



#### Laser Time Transfer to Galileo

- SLR as tool for high precision time synchronization of stable GNSS clocks combining Laser one-way with two-way, similar to ELT concept.
- Convince ESA for Galileo.



# Conclusions 2

- GNSS satellites are equipped with clocks of higher and higher stability.
- As GNSS-derived satellite clock corrections are highly correlated with radial orbit errors.
- SLR thus plays an important role to separate temperature-induced variations of the apparent satellite clocks from orbit errors and to characterize the physical behavior of the clocks.
- This is also crucial for improving the determination of the gravitational redshift parameter α beyond Gravity Probe A using the clocks onboard the two Galileo satellites misplaced to eccentric orbits (Delva et al., 2015).
- It is time that SLR time synchronization of GNSS clocks plays a more important role.



# **GNSS** is expanding



- Soon more than 100 satellites in the sky
- All equipped with SLR reflectors (GPS beginning with Block III SV-9)

# Simple Simulation

- GNSS constellation is expanding, and in future all satellites will be equipped with SLR reflectors.
- How to observe GNSS satellites with SLR to derive precise orbits?
- Covariance analysis with simulated SLR observations from
  - 1, 6, and 17 SLR stations,
  - three sets of normal points, at 30° elevation rising, culmination if elevation above 60°, and at 30° elevation setting,
  - or one set of normal points per station at high elevation,
  - of full 24-satellite Galileo constellation.
- Good weather situation, observations of stations uncoordinated.



# Simulation: 1 SLR Station





20<sup>th</sup> ILRS Workshop, Oct. 11, 2016

#### Simulation: 6 SLR Station





# Simulation: 17 SLR Station





#### Range of E01 for one SLR Station



Institute for Astronomical and Physical Geodesy

# Ranges of all Galileo Satellites for one SLR Station



Institute for Astronomical and Physical Geodesy

# Simulated SLR Observations: E=30 $^\circ\,$ , Culmination



Institute for Astronomical and Physical Geodesy

# Simulated SLR Observations: E=30 $^{\circ}$ , Culmination

































#### Formal Orbit Errors: 1 Station, 1 Day



Institute for Astronomical and Physical Geodesy

#### Formal Orbit Errors: 1 Station, 3 Days



Institute for Astronomical and Physical Geodesy

#### Formal Orbit Errors: 6 Stations, 1 Day





#### Formal Orbit Errors: 6 Stations, 3 Day



Institute for Astronomical and Physical Geodesy

#### Formal Orbit Errors: 6 Stations, 1 Day, Culminations



Institute for Astronomical and Physical Geodesy

#### Formal Orbit Errors: 6 Stations, 3 Days, Culminations





#### Formal Orbit Errors: 17 Stations, 1 Day



Institute for Astronomical and Physical Geodesy

#### Formal Orbit Errors: 17 Stations, 3 Days



Institute for Astronomical and Physical Geodesy

# Conclusions 3

- Simple simulations demonstrate the capability of precise orbit determination for GNSS satellites using a limited number of observations per station.
- Coordination of the observations between the stations is crucial to make economic use of the observing system.
- Eventually SLR observations should not only be used for orbit validation but combined with GNSS observations for determining precise orbits.



#### **Space Geodetic Techniques**



Institute for Astronomical and Physical Geodesy

#### **Space Geodetic Techniques**



Institute for Astronomical and Physical Geodesy

#### **Space Geodetic Techniques**



Institute for Astronomical and Physical Geodesy

#### Conclusions

- SLR plays an important role since decades for validating GNSS derived satellite orbits.
- For new GNSS constellations and new orbit types SLR proves to be essential to calibrate new radiation pressure models.
- SLR allows to separate orbit- and temperature-induced variations of stable onboard GNSS clocks.
- Eventually the role of SLR becomes even more important by contributing to precise orbit determination of GNSS satellites.
- Coordination of the observation schedule between stations is crucial to optimize the benefit-to-cost ratio.
- Integration of GNSS and SLR observations for precise product generation has to be forced in the context of GGOS.



## How to track GNSS?

- For validation and calibration of radiation pressure models?
  - one satellite block for a range of Sun-beta angles, i.e., one satellite block per orbital plane
  - good coverage along the orbit
- For determination of gravitational redshift parameter using Galileo E14/E18:
  - good coverage of orbits of both satellites (as long as clock running on H-maser)
- For BeiDou GEO satellites:
  - coverage of all satellites
- For contributing to precise orbit products combined with GNSS
  - coverage of full constellation
  - coordination of observation schedule among SLR stations



Many thanks for your attention!