

Federal Agency for Cartography and Geodesy

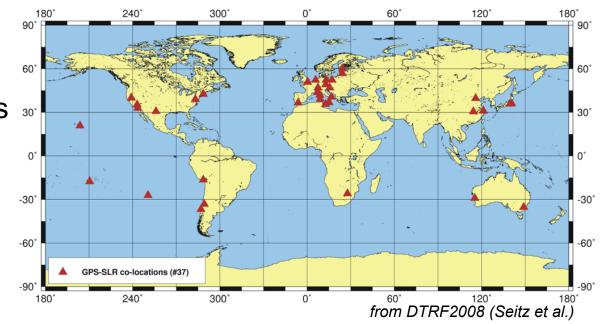
GGOS and the Importance of the Combination of Space Techniques

Hansjörg Kutterer

Federal Agency for Cartography and Geodesy, Germany

Content

- Combination of space-geodetic techniques
- Combination examples
- Role of GGOS
- Conclusions


Combination: State of the Art Current ITRF approach

- Station co-locations are the major connection between space-geodetic techniques
- Connection mainly via GNSS

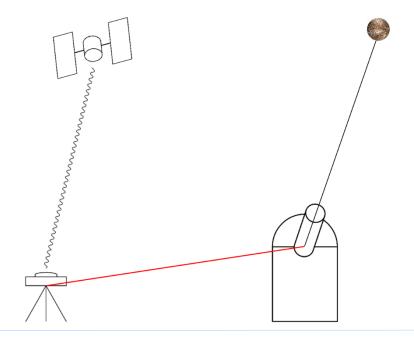
BUT:

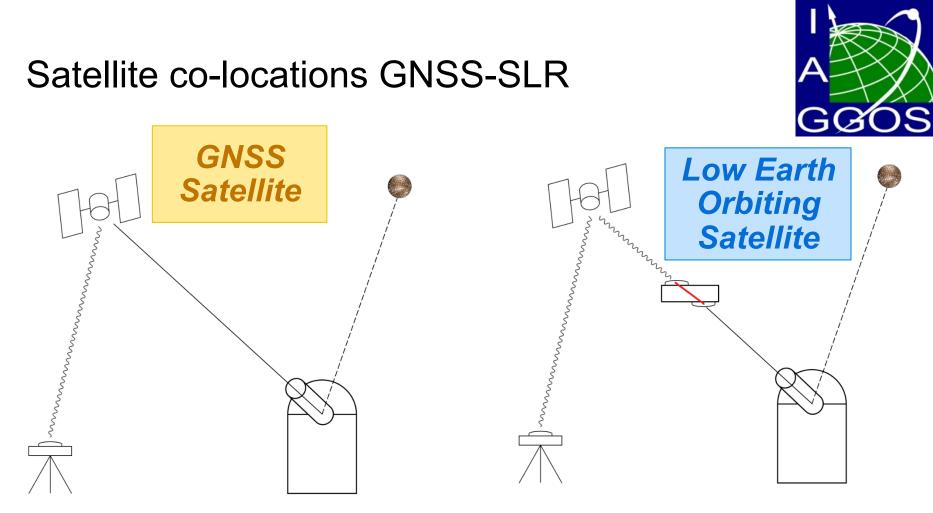
- Only few co-locations 30"
- Insufficient global distribution
- Discrepancies with local ties

Combined parameters: Current ITRF approach

	VLBI	GNSS	SLR	DORIS
Quasar coordinates	Х			
Station positions	Х	Х	Х	Х
Satellite orbits: GNSS		Х	Х	
Satellite orbits: spherical sat.			Х	
Satellite orbits: LEO		Х	Х	Х
Nutation	Х	(x)		
UT1-UTC, LOD	Х	lod	lod	lod
Polar motion	Х	Х	Х	Х
Geocenter		(X)	Х	Х
Low-degree gravity field		(x)	Х	(x)
Troposphere	Х	Х		Х

Combined parameters: Further possibilities




	VLBI	GNSS	SLR	DORIS
Quasar coordinates	Х			
Station positions	Х	Х	Х	Х
Satellite orbits: GNSS		Х	Х	
Satellite orbits: spherical sat.			Х	
Satellite orbits: LEO		Х	Х	X
Nutation	Х	(x)		
UT1-UTC, LOD	Х	lod	lod	lod
Polar motion	Х	Х	Х	Х
Geocenter		(X)	Х	X
Low-degree gravity field		(x)	Х	(x)
Troposphere	Х	Х		Х

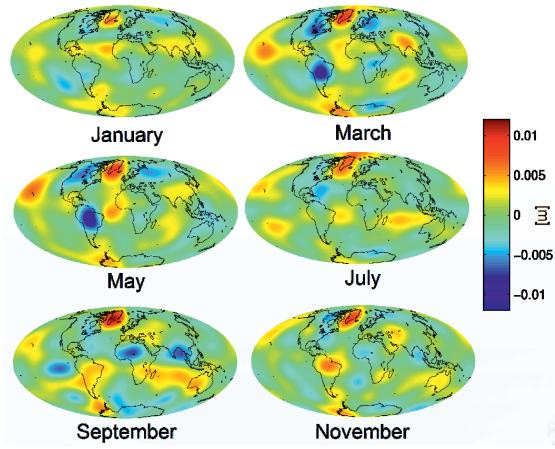
Station co-locations

- All instruments have to be located at one site together
- "Local Ties" are necessary as additional information
- Independent of the satellites tracked by each instrument

In both cases: Vectors of "Space Tie" are needed

Center-of-Mass -> microwave GNSS antenna

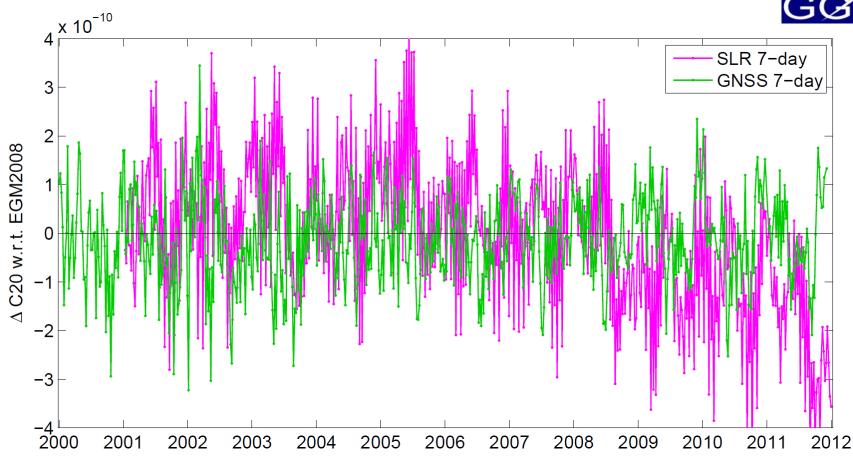
Center-of-Mass -> Laser retro-reflector array


Federal Agency for Cartography and Geodesy General aspects of the combination

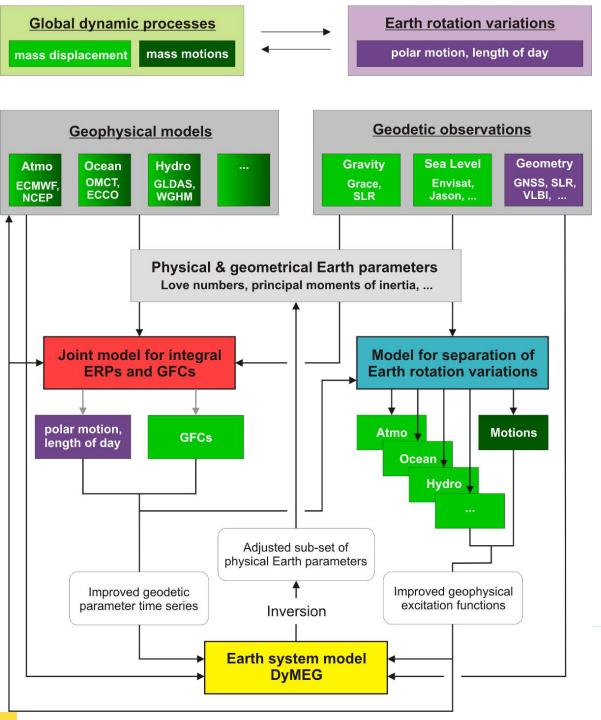
- Observational point of view:
 - usable infrastructure with technique ties
- Mathematical point of view:
 - need for identical or mutually transformable parameters
- Standardizational point of view: unique constants, backfround models, etc.
- Organizational point of view:

dedicated structures, workflows, ressources

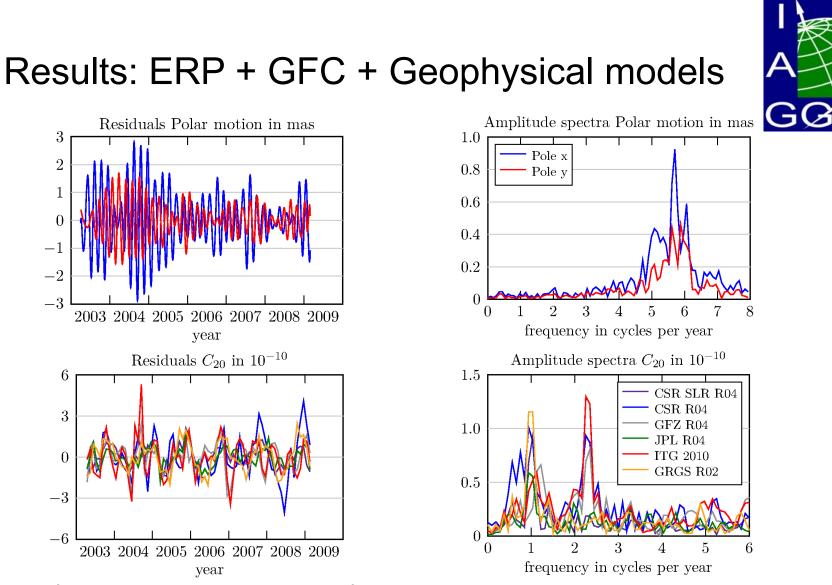
Gravity: Contribution of SLR



- Mean monthly gravity field variations (w.r.t. EGM2008)
- up to degree/order 10
- 9 spherical satellites: LAGEOS-1/2, Starlette, Stella, AJISAI, Beacon-C, Blits, Larets, LARES


from Sosnica et al., 2014: "Earth Rotation and Gravity Field Parameters from Satellite Laser Ranging". Poster presentation at the ILRS Workshop 2014, Annapolis

Gravity: SLR and GNSS


from Thaller et al., 2013: "Earth Rotation Parameters from Satellite Techniques". Presented at the EGU General Assembly 2013, Vienna

ERP + GFC + Geophysical models

German DFG Research Unit FOR 584: "Earth Rotation and Global Dynamic Processes" (Lead: J. Müller) Here: Joint project together with DGFI and TU Munich Integration of ERP + gravity variations + data from geophysical models Standards and conventions! Metadata!

from A. Heiker (2013): Mutual validation of Earth orientation parameters, geophysical excitation functions, and second degree gravity field coefficients.

Role of GGOS: Motivation

GOS

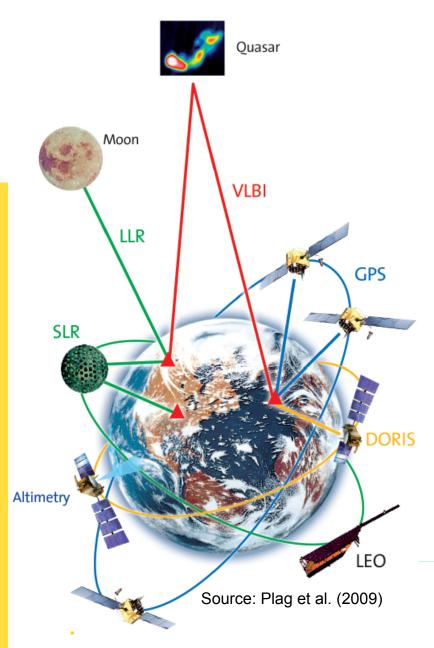
4 | Page 13

Role of GGOS: Terms of Reference

The vision of GGOS is

"Advancing our understanding of the dynamic Earth system by quantifying our planet's changes in space and time."

The mission of GGOS is


to p cha	GGOS strongly relies on the comprehensive combination of space-geodetic techniques	<u>1d</u>
to D		
bac	but this doop not complete the job l	
<u>cha</u>	but this does not complete the job !	
appl	lications.	

to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built.

GGOS: Observation Architecture

Five major levels of instrumentation and objects to be observed

Level 1: terrestrial geodetic infrastructure;

- Level 2: LEO satellite missions;
- Level 3: GNSS and Lageos-type SLR satellites;
- **Level 4**: planetary missions and geodetic infrastructure on Moon and planets;
- Level 5: extragalactic objects.

Consistent spatial referencing as immanent condition / contribution

GGOS: Present state and next steps

- - Geodetic information and expertise
 - Global geodetic infrastructure
 - Services, standards and support

⇒ Implementation plans

- Communication, education and outreach
- Structural enhancement of the GGOS organization (BNO, BSP, CO) ⇒ Implementation plans
- High-level GGOS Plenary Talk at IAG Scientific Assembly 2013
- Participation in GEO, CEOS, UN GGIM

Conclusions

- Thorough combination of space techniques (and others) is the feasible key to further relevant applications of Geodesy for science and society
- Ongoing activities
 - IAG: Services, GGOS ⇔ Scientific Community together with National Agencies ⇔ National Level / Regional Level
 - Establishment and maintenance of geodetic observatories meeting GGOS requirements
 - Further development and adoption of standards and metadata
 - Scientific work as well as R&D work
- Needs
 - Official High-Tech Infrastructure with better global coverage
 - Strategic Partnerships (NMAs, Space Agencies, ...)
 - Coordinated Policies
 - Sustainable Funding

Inter-governmental coordination and support ⇒ UN GGIM !!!

Thank you for your kind attention!

Contact:

Bundesamt für Kartographie und Geodäsie Richard-Strauss-Allee 11 60598 Frankfurt

Prof. Dr.-Ing. Hansjörg Kutterer President hansjoerg.kutterer@bkg.bund.de www.bkg.bund.de Tel. +49 (0) 69 6333-226

