

b

GNSS for Positioning, Navigation, Timing, and Science

Gerhard Beutler Astronomical Institute, University of Bern, Switzerland

19th International Workshop on Laser Ranging

October 27-31, 2014

Session 03: Science through Missions Monday, October 27, 14^h10^m-14^h30^m Governor Calvert House Annapolis USA

Contents

b

- Positioning, navigation, and timing: a new problem?
- GNSS in Space Geodesy
- GNSS as a satellite geodetic method
- What can you do with GNSS in your life?
- The International GNSS Service (IGS): Science applications
- Modeling GNSS orbits …
- What can SLR do for GNSS?
- What can GNSS do for SLR?
- Conclusions

Positioning, Navigation, and Timing

UNIVERSITÄT BERN

Peter Apian's Geographia 1533

The problem is not really new ...

Space Geodesy: VLBI

VLBI provides in addition precession, nutation and UT1, and contributes to the scale of the terrestrial network.

Astronomisches Institut

b

... SLR provides the origin of the terrestrial system, it contributes to the scale, Earth rotation, calibrates/validates GNSS orbits.

The ILRS (International Laser Ranging Service) provides measurements and products

Astronomisches Institut

UNIVERSITÄT

Space Geodesy: GNSS

GNSS = Global Navigation Satellite System

GNSS are the working horses of space geodesy

General perception:

- GNSS people should densify the global terrestrial network of stations provided by VLBI and SLR
- but please do not try to get involved in science!
- GNSS people do not even plan their own missions – they are abusing system designed for "real" use: *horribile dictu*!

Astronomisches Institut

UNIVERSITÄT

UNIVERSITÄT BERN

GNSS today: the Satellites

The GNSS satellites

- > Weight ~ 1 ton
- Size

- ~ 2 x 2 x 2 meters
- Panels' span ~ 10 meters

GPS (Block IIF)

GLONASS (K)

Galileo (IOV)

Astronomisches Institut

AIUB

Constellation Status (2014)

^b Universität Bern

 \boldsymbol{u}^{b}

System	Blocks	Signals	Sats*)
GPS	IIA IIR-A/B IIR-M IIF	L1 C/A, L1/L2 P(Y) Same +L2C +L5	8 12 7 4(+1)
GLONASS	M K	L1/L2 C/A + P +L3	24 (1)
BeiDou	GEO IGSO MEO	B1, B2, B3 same same	5 5 4
Galileo	IOV	E1, (E6), E5a/b/ab	(4)
QZSS	IGSO	L1 C/A, L1C, SAIF L2C, E6 LEX, L5	1
IRNSS	IGSO	L5, S	(2)

*) not yet declared healthy/operational

Astronomisches Institut

AIUB

b

Positioning and Timing with GNSS

GNSS have been designed for use on the Earth's surface or in the Earthnear space.

Each satellite is equipped with a stable oscillator generating at least two coherent carriers. Code info is modulated on the carrier.

The travelling time of signals (and its changes in time) between the GPS satellite and the receiver are the basic measurements.

→ With the speed of light *c* the distances ρ (and their time evolution) between satellite and receiver may be reconstructed.

Positioning:
$$c (t_r - t^s) = \rho + c (\Delta t_r - \Delta t^s) + \Delta \rho_t(\lambda) + \Delta \rho_t$$

Science: $c(t_r - t^s) = \rho + c(\Delta t_r - \Delta t^s) + \Delta \rho_t(\lambda) + \Delta \rho_t$

For normal users (as opposed to scientists) the grey terms are assumed known

- > $\rho = |r(t^{s})-R(t_{r})|$ is used to determine the position of the receiver R(t) and the orbit r(t) of the GNSS satellite.
- \succ c ($\Delta t_r \Delta t^s$) for synchronization of space and ground clocks.
- > $\Delta \rho_{l}(\lambda)$, the ionospheric delay, is used for ionosphere modeling (space weather).
- > $\Delta \rho_t$, the tropspheric delay, is used in meteorology (to determine the water vapor content of the atmosphere).

Astronomisches Institut

]],

UNIVERSITÄT

GNSS for everybody

$$c (t_r - t^s) = p_r^s = \rho(x, y, z) + c \Delta t_r$$

 \rightarrow
take (at least) four satellites, solve for
 $x, y, z, \Delta t_r$

When trying to find addresses in foreign cities, a GNSS-based navigation system may save your life or *at least your marriage*.

Astronomisches Institut

b

GNSS for (almost) everybody

$$\Delta t_{i} + \Delta t^{j} = \frac{1}{c} \left(p_{i}^{j} - \rho_{i}^{j} \right)$$

$$\Delta t_{1} - \Delta t_{2} = \frac{1}{c} \left(p_{1}^{j} - \rho_{1}^{j} \right) - \frac{1}{c} \left(p_{2}^{j} - \rho_{2}^{j} \right)$$

"traditional method" = Common view

quasi-simultaneous observations of one satellite by two receivers (simultaneous in s/c time scale) broadcast or IGS ephemeris (assumed known)

dual frequency \rightarrow ionosphere correction receiver *i* computes its clock offset using satellite *j*

1PPS output/input synchronized to receiver clock

Stories about problems above the 1ns-level in GNSS time transfer are fairy tales! (remember the CERN $\leftarrow \rightarrow$ Gran Sasso neutrino experiment)

Astronomisches Institut

 $\boldsymbol{u}^{\scriptscriptstyle b}$

GNSS for Science

b

What has been achieved in science with GNSS?

- > GNSS orbit accuracy < 5cm \rightarrow enables, e.g., LEO POD!
- Ferrestrial Reference Frame 400 sites < 1cm, < 1mm/ year
- Polar Motion: < 1 mm (about 20mas), one day resolution</p>
- Iength of day: few ten ms (could be done better)
- Clock synchronization: Conventional: 1ns, science: few 10 ps consistency with orbits, < 1ns absolute</p>

Science applications dealt with/enabled by the IGS

The IGS 1994 - 2004

AIUB

 $u^{\scriptscriptstyle b}$

Date	Event		
January 1994	Start of official service on January 1		
November 1994	Workshop on the Densification of the ITRF at JPL, Pasadena		
May 1995	IGS Workshop on Special Topics and New Directions at GFZ in Potsdam		
March 1996	IGS Analysis Center Workshop in Silver Spring, USA		
March 1997	IGS Analysis Center Workshop at JPL in Pasadena		
December 1997	IGS Retreat in San Francisco		
February 1998	IGS Analysis Center Workshop at ESOC in Darmstadt		
December 1998	Prof. Christopher Reigber elected as IGS Chairman 1999-2002		
March 1999	LEO Workshop, Potsdam, Germany		
June 1999	Analysis Center Workshop, La Jolla, California		
March 2000	IGS Tutorials in South Africa		
May 2, 2000	Selective Availablitiy removed!!		
July 2000	IGS Network Workshop		
July 15, 2000	CHAMP Launch		
September 2000	IGS Analysis Center Workshop at USNO		
December 2000	IGS Strategic Planning Meeting		
February 2001	LEO Workshop		
March 2001	Glonass Service Pilot Project		
March 2001	TIGA Project established		
April 2002	Ottawa Workshop: Towards Real-time		
July 2002	UN Regional GNSS Workshop		
December 2002	Prof. John Dow elected as IGS Chairman 2003-2006		
April 2003	Ionosphere maps (IONEX) etc. official IGS product		
May 2003	First operational combined GPS/GLONASS analysis products		
August 2003	Essential improvement of "near-real-time" orbits		
March 2004	IGS Analysis Center Workshop and 10 Years Symposium		

The IGS 2005-2014

Ь	
U	NIVERSITÄT
В	ERN

1,^b

Date	Event	
March 2005	IGS renamed International GNSS Service	
May 2006	IGS Analysis Workshop in Darmstadt, Germany	
December 2007	Combined Space-geodetic analysis workshop in San Francisco, USA	
June 2008	IGS Analysis Center Workshop in Miami, USA	
2008	IGS Antenna Working Group established	
2008 - 2009	First IGS Reprocessing Campaign 1994 - present	
2008	IGS Bias and Calibration Working Group	
June 2010	IGS Analysis Center Workshop in Newcastle, UK	
January 2011	Urs Hugentobler (TU Munich) new IGS Chair	
August 2011	IGS-MGEX Call for Participation launched	
January 2012	IGS Workshop on GNSS Biases in Bern, Switzerland	
July 2012	IGS Analysis Center Workshop in Olsztyn, Poland	
2013 - 2014	Second IGS Reprocessing Campaign 1994 - present	
June 2014	IGS Workshop and celebration of 20 years of services	

What else?

GNSS for ... studying the ionosphere and the troposphere ... POD (precise orbit determination) ... limb sounding

Astronomisches Institut

b

UNIVERSITÄT BERN

h

Modeling GNSS Orbits

Lageos (LAser GEodetic Satellite); spherical, diameter 60cm, mass 405kg

> GNSS satellite: Body 2 x 2 x 2 m³, "wings" 20 x 2 m², mass 500-1000kg

Modeling GNSS Orbits

Ferraris are built to minimize non-gravitational forces, trucks not really (only "to some extent"). From the p.o.v. of orbitography the Lageos is a Ferrari, the GNSS satellite is a truck.

Astronomisches Institut

b

Modeling GNSS Orbits: GNSS

 Spectra of polar motion differences w.r.t. IERS 08 C04 from GLONASS-only, GPS-only, and combined GPS/GLONASS Analysis based on years 2012-13. 1sigma level for IERS 08 C04: Analysis derived from Meindl et al (2013).
 Orbit modeling problems for GLONASS do bias virtually all parameters of scientific interest, see Ray, J., Altamimi, Z., Collilieux, X., van Dam, T. (2008)

Astronomisches Institut

b

The IGS in 2014

•

Orbit modeling in the IGS made great progress in the IGS since 1994.

Orbit validation and combination are of importance.

- Consistency of solutions is important in this context the IGS is in a much better shape today than 10 years ago thanks to the analysis coordination by NOAA/NGS – but ...
 - **Different orbit models** (and different parameterizations) should be allowed
 - The arc length should be considered as an important attribute of the solutions!
 - GNSS-specific solutions should be made regularly – at least in reprocessing exercises (and be it only for integrity monitoring);
- The three approaches (empirical, box-wing, physical modeling in the Fliegel tradition) must be further developed and validated.
 - The parameterization of orbits (e.g., inclusion of low degree spherical harmonics \rightarrow Sosnica et al., PY10) should be reconsidered and not only for first degree terms (at least for repro-exercises).

Astronomisches Institut

b

Modeling GNSS Orbits

- Orbit modeling problems may show up in all parameters of satellite-geodetic methods.
- One detects "spurious" spectral lines at periods which are typical for the modeled perturbing acceleration.
- In the case of GNSS solar radiation pressure is the big critical factor.
- Rodriguez-Solano, JoG et al. (2014), JoG 88:559–574, showed that the problem may be mitigated by improved SRP models
- → This particular problem will be reduced by about a factor of ten in the near future.
- → Problems of this kind are inherent in satellite geodetic methods.
- \rightarrow SLR-like satellites, or accelerometers improve the situation.

Modeling GNSS Orbits

J Geod (2014) 88:559–574 DOI 10.1007/s00190-014-0704-1

ORIGINAL ARTICLE

b

UNIVERSITÄT BERN

Reducing the draconitic errors in GNSS geodetic products

C. J. Rodriguez-Solano · U. Hugentobler · P. Steigenberger · M. Bloßfeld · M. Fritsche

The authors replaced the ECOM by an adjustable box-wing model, where (at maximum) 9 parameters are adjusted for each satellite. Spurious effects on ERPs and other parameters are significantly reduced in combined GPS/GLONASS solutions.

b

- The major problem after 2008 was GLONASSinduced (blame Jim Slater and Gerhard Beutler!).
- Major improvements in SRP modeling are about to be implemented into the products of IGS Analysis Centers.
- **Spurious spectral lines will** not disappear, but they will be substantially reduced.
- Subsequently we show the SLR-validation of the developments at CODE!

What can SLR do for GNSS?

Validation of new CODE SLR models:

SLR-residuals of GLONASS SLR observations in the $[u-u_s, b]$ -plane, method introduced to satellite geodesy by Claudia Flohrer/Urschl, before (left) and after (right) model improvement at CODE.

Validation performed by Krzystof Sosnica.

→ Fight for SLR-reflectors on *all* GNSS satellites!

SLR may may/should make use of the GNSS strength, e.g., in common SLR/ GNSS analysis to get rid of the weakness of the network-induced weakness to determine, e.g., polar motion to even improve the SLR strength in determining the low degree/order terms of the gravity field.

→ Typical GGOS problem! → study the mitigation of amplitudes of spurious lines.

Astronomisches Institut

h

Conclusions

GNSS- and SLR-based geodesy have a lot in common, in particular the problems of

orbit modeling,

biasing geophysical parameters by orbit modeling

- GNSS and SLR both are sensitive to the low-degree/order terms of the gravity field (including first degree/order terms).
- GNSS is basically an interferometric technique, but offering dense worldwide observational coverage a tremendous advantage!
- SLR is an absolute technique a tremendous advantage with incomplete observational coverage.
- Both techniques need each other!

GNSS in particular needs SLR validation!

→ Get these SLR reflectors on GPS Block III !

