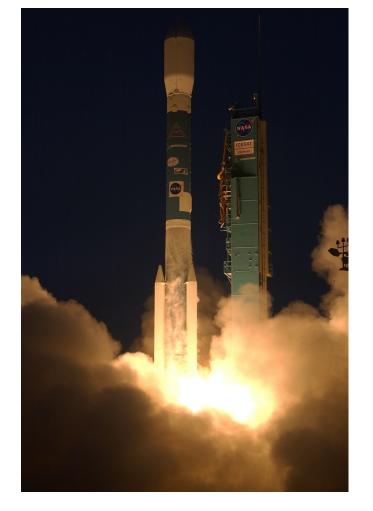


The NASA Ice, Cloud and land Elevation Satellite (ICESat) Series: Science, Data Products and Operations

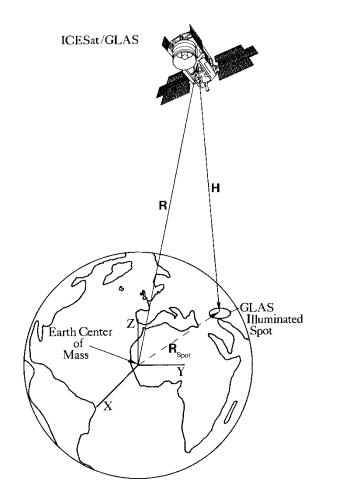
B. E. Schutz and H. Rim University of Texas at Austin

schutz@csr.utexas.edu

T. Neumann and S. Luthcke GSFC



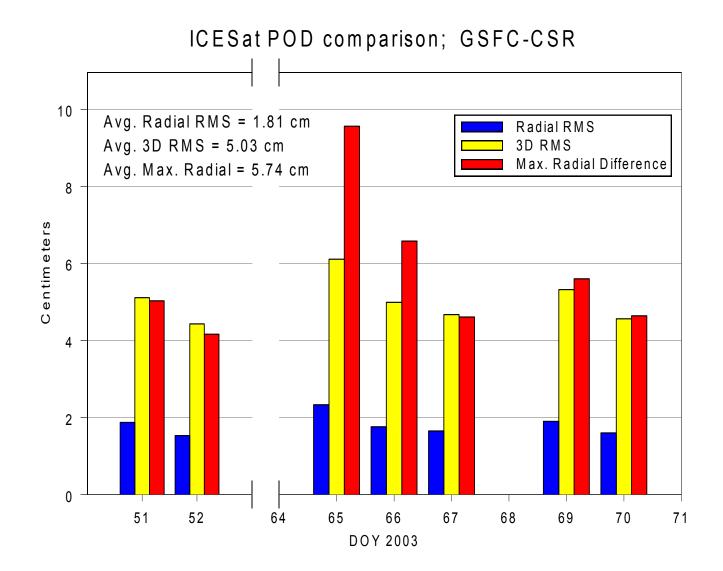
- Examples:
- Altimetry is one manifestation of laser ranging
- Early laser altimetry from Shuttle and even earlier from Apollo
- Laser altimetry at Mars (MOLA)
- MESSENGER (Mercury)
- Earth satellite series
 - Ice, Cloud, and land Elevation Satellite (ICESat or ICESat-1)
 - Follow-on mission ICESat-2
- Others
- Focus of this presentation will be ICESat series



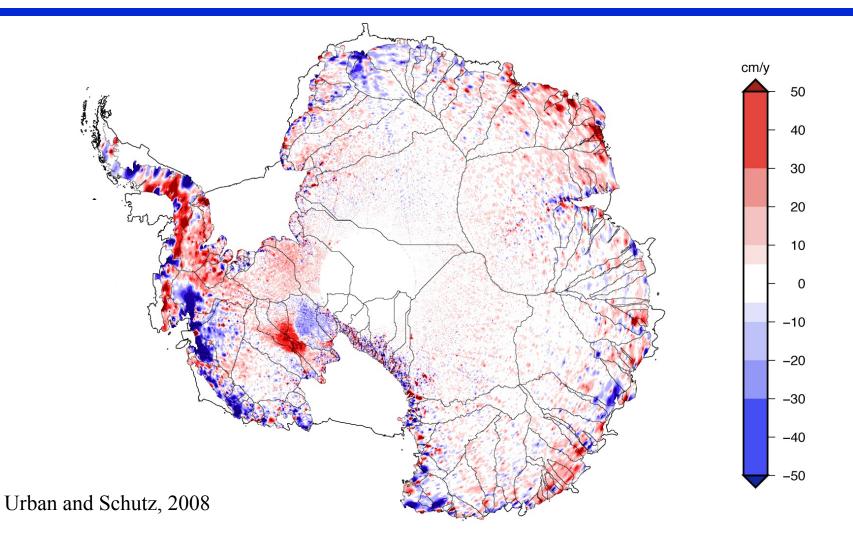
- Ice, Cloud and land Elevation Satellite
 - Launched January 13, 2003 00:45 UTC from Vandenberg (CA) on Delta-2
 - Delta-2 will be used for launch of ICESat-2, expected launch ~October 2017
- Primary instrument
 - on ICESat was GLAS (Geoscience Laser Altimeter System)
 - new instrument for ICESat-2 called ATLAS (Advanced Topographic Laser Altimeter System)
- Purpose:
 - detect surface change of polar ice sheets and sea ice,
 - map land topography and vegetation canopy with high accuracy
 - profile clouds and aerosol layers
- Construction:
 - GLAS and ATLAS are NASA Goddard instruments
 - ICESat-1spacecraft built by Ball Aerospace (Boulder)
 - ICESat-2 spacecraft built by Orbital Sciences (Phoenix)

Satellite Altimetry Concept: I

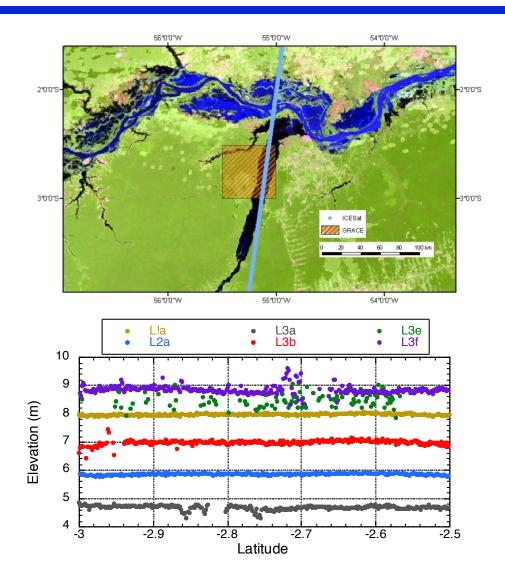
- Altimeter (radar or laser) measures the scalar distance from the spaceborne instrument to a point on the planet surface illuminated by the instrument; hence the planet topography is described with respect to the satellite orbit
- Topography with respect to a fixed planetary reference point and axes is required
- If the following are known/ measured: R and H, it follows that the measured point on the surface is given by R_{spot} = R + H, i.e., the geolocated spot; knowledge of POD and PPD are important


- Determination of surface topography requires POD and PPD
- POD for ICESat-1 and -2 based on GPS (ICESat-1 is JPL BlackJack receiver; ICESat-2 is RUAG receiver)
- SLR provides important validation of orbit determined from GPS (reduces the need for ~ continuous observations, which can be difficult with SLR)
- Experience with ICESat-1 SLR showed that POD accuracy was ~2 cm

- ICESat-1 SLR array designed and constructed by ITE in Laurel, MD
- ICESat-2 SLR array very similar to ICESat-1 and has been delivered to Orbital Sciences for installation


NASA/GSFC698 and UTCSR ICESat-1 POD Cal/Val

Changes in Antarctica from ICESat



Other Applications: Rio Tapajos (Brazil) ICESat Monitoring

- ICESat measures 5-9 m elevation change
- Very small slope of river consistent with hydrology
- Noise from laser passing through clouds above the river
- Seasonal river stages and temporal phase closely match data from other sources

Laser Ranging Workshop, Annapolis, MD October 27-31, 2014

- ICESat-1 deorbited in 2010 to reduce possible contribution to orbital debris (deorbited at end of instrument life)
- ICESat-2 plans moving forward, with plans to launch in ~October 2017 on Delta-2
 - ICESat-2 under development by Orbital Sciences Corp. (in test)
 - Lower altitude than ICESat-1 (~100 km)
 - ICESat-2 will have much higher repetition rate than ICESat-1; smaller footprint
 - ICESat-2 uses European GPS receiver (RUAG)
- Time series of elevation change important, so several year gap in time series will be partially filled by collection of airborne lidar data (Operation IceBridge)

- Concern about illumination of ICESat-1 detectors by ground-based lasers (SLR) led to development of SLR tracking restrictions
 - Most commonly used restriction for ICESat-1 was an elevation angle restriction of 70 degree cutoff;
 - Other restrictions available, such as a "go/no-go" restriction, which gives a mission control center the ability to enact a global restriction on ranging to its target
 - Specific nature of restrictions for ICESat-2 under investigation by ATLAS developers at GSFC

Other Differences between ICESat-1 and ICESat-2

	ICESat-1	ICESat-2	
Orbit			
Inclination	94 degrees	92 degrees	
Altitude	~600 km	~500 km	
Repeat	91d with 33d		
	sub-cycles		
Laser			
Frequency	IR and green	Green only	
Beams	1 beam	6 beams	
Rate	40 Hz	10,000 Hz	
Measurement	Echo digitization	Photon counting	
	(waveform)		

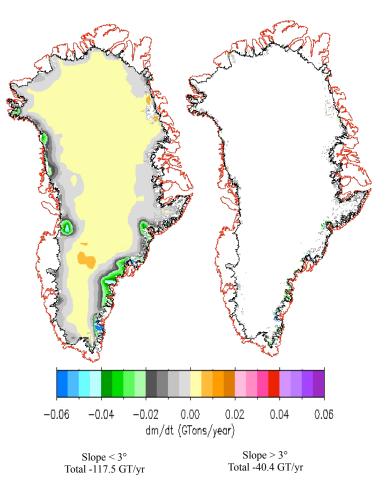
Other Differences between ICESat-1 and ICESat-2

Data Products

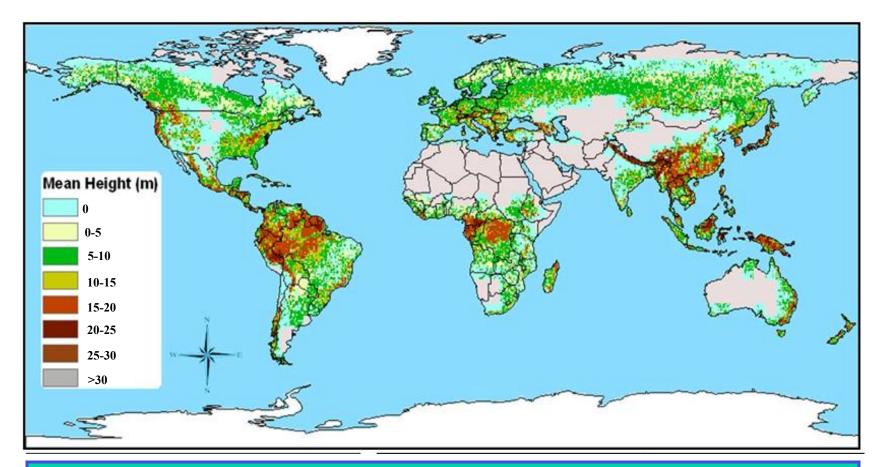
ICESat-1 GLA01 Waveform GLA02 Global Atmosphere **GLA03** Engineering **GLA04** Pointing **GLA05** Corrected Range **GLA06** Global Elevation GLA07-11 Atm products GLA12 Ice sheets GLA13 Sea ice GLA14 Land GLA15 Ocean

ICESat-2

ATL01 Level 1A product ATL02 Instrument corrected data ATL03 Global geolocated photons ATL04,09 Atmosphere products ATL06,11,14,15 Land ice H and dH ATL07,10 Sea ice SSH, freeboard ATL08 Land and vegetation ATL12 Ocean ATL13 Inland water


ICESat derived ice sheet elevation change

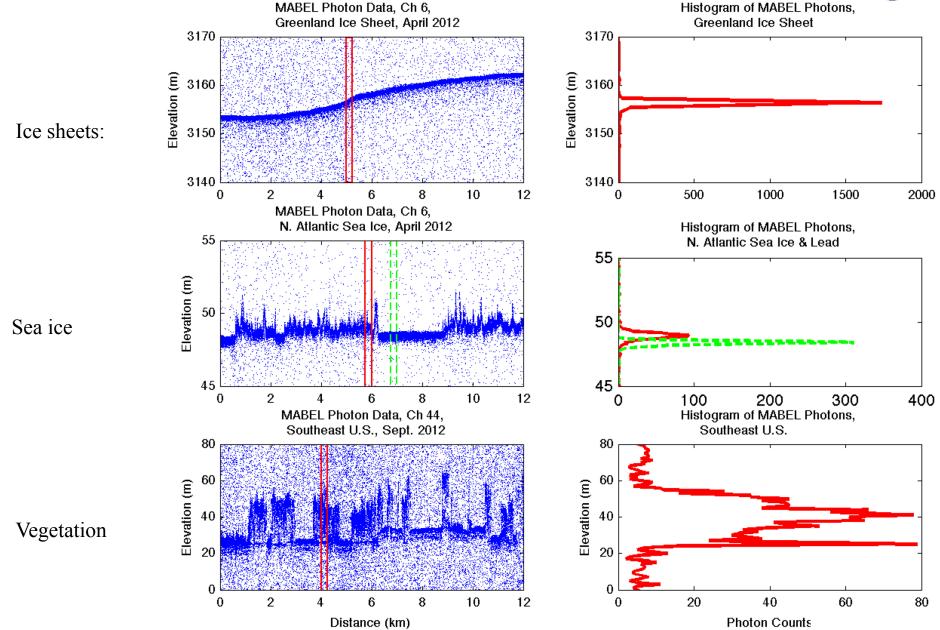
ICESat-derived ice loss as a function of slope


Slope	Fraction of area	Estimated Mass Loss	Total Ice Sheet Loss	Fraction of Total
>0.5°	33%	175 GT	145 GT	>100%*
>1°	18%	132 GT	145 GT	83%
>2°	8.5%	68 GT	145 GT	43%
>3°	5.1%	40 GT	145 GT	26%

*

there is a net gain of ice in areas with slopes $< 0.5^{\circ}$

ICESat measured canopy height



- ICESat's accurate ranging capability has provided large-scale global biomass estimates from canopy height measurements.
 - 50-70 meter footprint provides about 5 m average height accuracy.

What will the ICESat-2 data look like?

