

Simulated Comparative Analysis of One- and Two-Way Planetary Laser Ranging Systems

D.Dirkx, S. Bauer, R. Noomen, P.N.A.M Visser, L.L.A. Vermeersen

Challenge the future

Planetary Laser Ranging

Available methods

- Active space segment required for planetary laser ranging
 - One-way system easier to operate
 - Two-way system more accurate; easier data analysis
- This study: Numerical comparative performance analysis

Planetary Laser Ranging

- Main difference in one- and two-way error budget
 - Influence of clock noise
- Clock noise accumulates

Method Difference

- Over long time periods for one-way
- Over light time/retransmission time for two-way

3

Planetary Laser Ranging

Clock noise removal

One-way system requires clock error estimation
Arc length/order of estimation may be varied

Simulation Setup

- Lunar polar orbiter (1 month)
 - Empirical model used for dynamics mismodelling
 - Radiation pressure scaling/along track emp. acc. estimated per state arc
 - No lunar physical parameters are estimated
- Phobos lander (1 year)
 - Orbit, libration amplitudes and C_{22}^{P} estimated
 - No errors in dynamical modelling assumed
- Range measurements simulated; used for estimation

Lunar orbiter results

- Interchange between clock/state signal/noise
 - Correlations between parameters
 - Profile of true errors in both imperfectly modelled

Lunar orbiter results

- Small difference between one-, two-way position error
 Clock noise not dominant
- Two-way system more predictable
- Improvement of force modelling easier with two-way data

Phobos lander results

- Orders-of-magnitude improvement compared to current knowledge
 - Two-way factor ~10 better than one-way

Phobos lander results

- Small librations estimated much better by two-way system
 - Decoupled from dynamics
- Difference for Phobos geophysics would be marginal
 - Current volume uncertainty limits interpretation

Conclusions

- One- and two-way range performance simulated for Phobos lander and lunar orbiter.
- Dynamics errors dominate lunar orbiter error budget
 - Two-way results more robust
- Two-way results for Phobos lander order of magnitude better
 - Geophysical interpretation for Phobos similar for both systems
- Two-way system potentially superior, but analysis models must be sufficiently accurate

Challenge the ______