

Bundesamt für Kartographie und Geodäsie

Geometry bias in a short baseline ground calibration

van Prochazka¹, Josef Blazej¹, Jan Kodet^{2,1}, K. Ulrich Schreiber² , Johann Eckl

¹ Czech Technical University in Prague, Brehova 7, 115 19 Prague, Czech Republic
² Technical University Munich, Station Wettzell, 93444 Bad Kötzting, Germany
³ Federal Agency for Cartography and Geodety, Station Wettzell, 93444 Bad Kötzting, Germany

presented at 19th International Workshop on Laser Ranging "Celebrating 50 Years of SLR: Looking Back and Planning Forward" Annapolis, MD, USA, October 27-31 2014

Motivation – ELT calibration experiment

at Wettzell WLRS

- T/R telescope 75 cm diameter reflector
- ELT Calibration detector installed in front (~ 1 m) of it (see previous talks related to European Laser Timing)
- SLR versus ELT reference points distance surveyed $L = 2302 \pm 1 \text{ mm}$
- calibration procedures performed routinely over 2 months, stability and reproducibility tested
- significant (3 cm !) az/el dependence identified

Calibration value dependency

Calibration value dependency

Calibration value dependency

Experimental results

- Pointing dependent bias in short baseline calibration has been identified
- This bias exceeds 3 cm on a modest size telescope.
- Beam path geometrical model has been built.
- The correct calibration value is not measureable directly, it has to be evaluated using a fit of pointing and ranging data.
- Analogical approach can be used in other short baseline calibration configurations

Good luck