

Thermal and Optical Characterization of a GNSS Retroreflector Array at the SCF_Lab

A. Boni¹, S. Dell'Agnello¹, C. Cantone¹, E. Ciocci¹, S. Contessa¹, G. O. Delle Monache¹, C. Lops¹, M. Martini¹, C. Mondaini¹, G. Patrizi¹, L. Porcelli, L. Salvatori¹, M. Tibuzzi¹, R. Vittori^{2,1}, G. Bianco³,

> ¹ Laboratori Nazionali di Frascati (LNF) dell'INFN, Frascati (Rome), Italy ² Aeronautica Militare Italiana (AMI) and Italian Ministry of Foreign Affairs, Embassy of Italy, 300 Whiteheaven St. NW, Washington, DC 20008 ³ASI, Centro di Geodesia Spaziale "G. Colombo" (CGS), Matera, Italy

19th International Workshop on Laser Ranging, Annapolis (USA) 10/27-31/2014

Outline

- GRA optical and mechanical design
- Measurements at the SCF_Lab
- Results of the FFDP tests in Air
- Results of the default SCF-Test
- Results of the GCO measurements
- Optical simulations and comparison with measurements
- Conclusions and future work

30-10-2013

GNSS Retroreflector Array: GRA

- 55 uncoated retroreflectors
- Fused Silica (Suprasil 1) CCRs with 33 mm front face diameter with DAO = $3 \times (0.0" \pm 0.5")$
- Aluminum base
- Quasi circular shape
- Four azimuth orientations

Clocking of CCRs orientation:

(red=0°) green=30°, blue=60°, yellow=90°

DAO: Dihedral angle offset

30-10-2013

GRA FFDP simulation

- 33 mm circular front face aperture
- CCR with DAO = $3 \times (0.0" \pm 0.5")$

• velocity aberration ~24 μ rad (Galileo IOV value)

- λ=532 nm
- horizontal polarization
- Intensity (OCS,Optical Cross Section) in $10^6 \,\mathrm{m^2}$ units

IOV: In Orbit Validation

Alessandro Boni et al. - 19th IWLR 2014, Annapolis

Friday 31 October 14

30-10-2013

Simulated GRA OCS = $113 \cdot 10^6 \text{ m}^2$

SCF-Test of the GRA at the SCF_Lab

SCF_Lab measurements

- Far Field Diffraction Pattern (FFDP) measurement in Air of all 55 CCR
- Default SCF-Test (measure of CCR thermal inertia)
- Lab-simulated Orbital SCF-Test (probe critical thermal conditions)

Introduced interferometric measurements from a commercial fizeau interferometer

30-10-2013

CCRs positions on the array

- •White circles: CCRs in Suprasil1
- •Red circles: CCRs in Suprasil311

30-10-2013

FFDP measurement in air

Friday 31 October 14

SCF

Measured GRA FFDP in Air

SCF B

sum of the 55 CCRs FFDP

The FFDP is not axial symmetric due to deviation of real manufactured retroreflectors from ideal conditions of simulations.

30-10-2013

Default SCF-Test

see Dell'Agnello et al., Creation of the new industry-standard space test of laser retroreflector for the GNSS and LAGEOS

30-10-2013

Alessandro Boni et al. - 19th IWLR 2014, Annapolis

Default SCF-Test

see Dell'Agnello et al., Creation of the new industry-standard space test of laser retroreflector for the GNSS and LAGEOS

30-10-2013

Alessandro Boni et al. - 19th IWLR 2014, Annapolis

CCRs thermal relaxation times

The measurement was performed at three different fixed temperatures of the support aluminum structure: 280K, 300K, 310K.

We report the analysis of the seven CCRs in the center, easier to measure.

30-10-2013

Alessandro Boni et al. - 19th IWLR 2014, Annapolis

CCRs thermal relaxation times

The measurement was performed at three different fixed temperatures of the support aluminum structure: 280K, 300K, 310K.

We report the analysis of the seven CCRs in the center, easier to measure.

	T=280K [sec]	T=300K [sec]	T=310K [sec]
CCR I	1518±156	1973±58	1313±157
CCR 2	1555±233	1595±28	1355±208
CCR 3	1340±2	1632±29	1635±398
CCR 4	1437±32	1893±33	1379±325
CCR 5	1531±101	1719±31	1784±500
CCR 6	1425±61	1925±28	1548±292
CCR 7	1423±63	1732±35	1535±428

TALL CODE = 290 K 11/7/2013

Time [sec]

30-10-2013

Optical behaviour during SCF-Test

Friday 31 October 14

SCF

Lab-simulated Orbital SCF-Test

SCF-testing of <u>GNSS</u> Critical half-Orbit (GCO) Sunrise-Eclipse-Sunrise probes critical features of the thermal and optical behaviour of the CCR

Galileo orbit:

- altitude = 23222km
- period ~ 14 h
- shadow time duration ~1h (cylindrical approximation)

see Dell'Agnello et al., ETRUSCO-2: An ASI-INFN Project of Technological Development and SCF-TEST of GNSS LASER **Retroreflector Arrays**"

30-10-2013

Sun-Earth

direction

GCO trace on CCR front face

GCO (GNSS Critical Orbit) is the orbit whose angular momentum is orthogonal to the Sun-Earth line of sight.

30-10-2013

Alessandro Boni et al. - 19th IWLR 2014, Annapolis

GCO SCF-Test

- •8 CCRs tested
- •CCRs were numbered according to their positions
- •White circles are CCRs in Suprasil1, while red circles are CCRs in Suprasil311
- CCRs tested were one for each rotation, and for each rotation we tested one CCR inside the array and one close to the edge (0deg-in/out, 30deg-in/out, 60deg-in/out, 90deg-in/out)

30-10-2013

GCO SCF-Test

30-10-2013

Alessandro Boni et al. - 19th IWLR 2014, Annapolis

Friday 31 October 14

14

GRA OCS variation during GCO

OCS of the whole array extrapolated from the 8 CCRs measured

Conclusions and future work

- Completed a full SCF-Test campaign of the GRA.
- FFDP of retroreflectors, taken into account tolerances on DAOs, are in good agreement with design performance.
- Thermal relaxation times of retroreflectors are above 1000 sec, which show good thermal insulation within their housing.
- No thermal OCS degradation within $\pm 15\%$ error during orbit measurement. This is a very important result that proves the overall design of the array and the optimized CCR mounting system
- Based on laboratory measurements we fine-tune thermal-optical simulations.
- We are proposing GRA for 2nd generation Galileo (EGEP ESA Call).

Thank you for your attention. Any question?

alessandro.boni@Inf.infn.it