

Accuracy Evaluation of QZS-1 Precise Ephemerides with Satellite Laser Ranging

19th International Workshop on Laser Ranging 30 October 2014 Annapolis, Maryland

Sachiyo Kasho (Japan Aerospace Exploration Agency)

Introduction

Quasi-Zenith Satellite System (QZSS)

- QZSS is a Japanese navigation satellite system.
- QZSS improves positioning availability
 - GPS compatible signals from QZSS improve positioning availability in East Asia and Oceanian region.
- QZSS improves positioning accuracy
 - For the purpose of PPP (Precise Point Positioning) service provision, QZSS-LEX (L-Band Experiment) signals allow for precise orbits and clock data.

▼QZS-1 orbital elements

Semi-major Axis	42,164 km (average)
Eccentricity	0.075 ± 0.015
Orbital Inclination	$43^{\circ} \pm 4^{\circ}$
Argument of Perigee	$270^{\circ} \pm 2^{\circ}$
Central Longitude of Ground Track	$135^{\circ} \pm 5^{\circ}$ East

▲ Coverage of QZS-1

Visible rate of QZS-1 in 24 hours more than 10 degrees in elevation, indicated by percentage(%).

QZSS Final Products

- JAXA publishes precise ephemeris/clock of GPS/QZS-1. (since December 2012)
- The final products are to be released approximately 6 days later.
- Available in QZSS project site (<u>http://qz-vision.jaxa.jp/USE/en/finalp</u>).
- Enhanced the accuracy of QZS-1 final products (QZF) lead to high accuracy PPP even in region where GPS signals are insufficient.
- JAXA have been working on improving the accuracy of QZF.

MADOCA QZSS Orbit via LEX Signal

MADOCA : Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis

- Multi-GNSS precise orbit/clock estimation tool that JAXA developed at 2011~2012.
- From April of 2014, JAXA is promoting Precise Point Positioning (PPP) experiments using MADOCA orbit/clock products transmited via QZSS LEX channel.

<u>Goal of orbit/clock accuracy :</u>

- Batch : 3 cm/0.1 ns (GPS), 7 cm/0.25 ns (GLO/QZS)
- Real-time: 6 cm/0.15 ns (GPS), 9 cm/0.25 ns (GLO/QZS)

Enhanced the accuracy of the MADOCA QZS-1 Orbit

- For Batch and Real-time processes, same parameters and models used.
- Improve the accuracy of Batch products
- Improve the accuracy of Real-time products

Real-Time PPP Service

Accuracy evaluation of JAXA-processed QZS-1 ephemerides: MAD and QZF

① Cross validation with other QZS-1 orbits

name	reference
MAD	Orbit processed with MADOCA (Batch)
QZF	JAXA final products http://qz-vision.jaxa.jp/USE/archives/final
TUM	TUM Multi-GNSS EXperiment products <u>ftp://cddis.gsfc.nasa.gov/pub/gps/products/mgex</u>
ESOC	Orbit processed with ESOC software

② SLR residual to QZS-1 orbits

Evaluation period

- June 16 (0:00 a.m.) July 12 (0:00 a.m.)
 in 2013 (26 days)
- Attitude mode : Yaw-Steering (YS) Mode

Estimation Condition of MAD

- Estimation Parameters
 - QZS-1 orbit/clock, GPS clock
 - Station position/clock
 - Tropospheric delay
 - Earth orientation parameter
 - Ambiguity

- Solar Radiation Pressure Model
 - **QZS-1**:

Modified-DBY (est 9 para. D,B,Y(const),D,B,Y(1/rev)) +X,Y,Z (piece-wise const)

GNSS STATION MAP

Estimation Condition of QZF

- Estimation Parameters
 - GPS/QZS-1 orbit/clock
 - Station position/clock
 - Tropospheric delay
 - Ambiguity

- Solar Radiation Pressure Model
 - GPS: CODE model
 - QZS-1: est 13 Para. D,B,Y(const),D,B,Z(1/rev),D,X(2/rev)

Comparison of Estimation Conditions among Ephemerides

case name	MAD	QZF	TUM	ESOC	
System	GPS + QZS	PS + QZS GPS + QZS GPS + Galileo QZS		GPS + QZS	
QZSS/GPS stations	QZSS/GPS: 11 MGM-net sta +2 MGEX, GPS: 9 IGS sta	QZSS/GPS: 9 JAXA sta, GPS: 3 JAXA sta + 21 IGS sta	QZSS/Galileo/GP S: 6 CONGO sta + 3 MGEX sta, Galileo/GPS : 18 CONGO sta + 13 MGEX sta	QZSS/GPS: 20, GPS: 20	
Frequencies	L1&L2	L1&L2	L1&L5	L1&L2	
Arc	24H+48H+24H	7days	3days	2day	
Est SRP para	QZS : Modified-DBY model (9 Para. : D, B, Y(const), D, B, Y(1/rev)) +X,Y,Z (piece-wise const)	GPS:CODE model QZS : 13 Para. : (D, Y, B(const), D, B, Z(1/rev), D, X(2/rev))	5 Para. :	QZS-1 : CODE model (5 Para. : D, Y, B(const), B(1/rev))	

Mean Differences in Radial Direction (m)

Mean Differences in Along Track (m)

	MAD	QZF	TUM	ESOC			MAD	QZF	TUM	ESOC
MAD	-	0.290	0.279	0.326	MA	D	-	0.020	-0.135	1.075
QZF	-	-	-0.010	0.027	QZ	F	-	-	-0.172	0.870
TUM	-	-	-	0.046	TUN	M	-	-	-	1.209
ESOC	-	-	-	-	ESO	C	-	-	-	-

- MAD seems to have around 30 cm bias in radial.
- Other ephemerides (QZF, TUM, and ESOC) matched with each other in radial.
- ESOC had lager bias in along track than other ephemerides.

RMS in Cross Track (m)

Differences 3D-RMS (m)

	MAD	QZF	TUM	ESOC		MAD	QZF	TUM	ESOC
MAD	-	0.139	0.311	0.602	MAD	-	0.386	0.685	1.492
QZF	-	-	0.328	0.499	QZF	-	-	0.663	1.041
TUM	-	-	-	0.672	TUM	-	-	-	1.689
ESOC	-	-	-	-	ESOC	-	-	-	-

- ESOC had periodic variations of one-day cycle in cross track (about $0.6m : 1\sigma$). \rightarrow Orbit determination in cross direction might have low accuracy.
- MAD most closely matched with QZF except for the bias in radial.
- QZF closely matched with TUM and ESOC in radial direction.
 - > QZF evaluated to be a definitive ephemeris at present.

Result : ESOC-QZF

Analysis of SLR residuals

ILRS Tracking Stations

- Tanegashima (7358)
- Koganei (7308)
- Yarragadee (7090)
- Changchun (7237)
- Beijing (7249)
- Shanghai (7821)
- Mount Stromlo (7825)

SLR Residuals (m)

- MAD showed a large bias (30~40cm).
- Other ephemerides (QZF, TUM, and ESOC) also showed biases but their magnitudes were smaller than that of MAD.

Conclusion

- SLR data and ephemerides of other systems allow reliable accuracy evaluations of JAXA QZS-1 ephemerides.
 - QZF
 - SLR residuals: ~ 20 cm RMS
 - QZF evaluated to be a definitive ephemeris in our analysis
 - MAD processed with MADOCA
 - SLR residuals: <u>~ 40 cm RMS</u>
 - Comparison with the other ephemerides shows <u>30~40 cm large bias in radial</u>
 - Eliminating the bias in radial direction will lead to a further improvement in accuracy.

Thank you for your attention.