Lunar Laser Ranging

Putting Gravity to the Test

Tom Murphy (UCSD)

© Dan Long 2014

Gravity Cries for Help

- General Relativity (GR) and Quantum Mechanics are fundamentally incompatible
 - gravity relatively poorly tested
- New physics of the dark sector could be misunderstanding of large-scale gravity
 - GR used as metric backdrop for cosmic expansion
- Scalar fields introduced by stringinspired and other modifications to GR produce potentially measurable effects
 - violation of the equivalence principle
 - time variation of fund. "constants"

Relativistic Observables in the Lunar Range

- By measuring the *shape* of the moon's orbit, LLR provides a comprehensive probe of gravity, currently boasting the best tests of:
 - Equivalence Principle (mainly strong version, but check on weak)
 - $\Delta a/a \approx 10^{-13}$; SEP to 4×10^{-4}
 - time-rate-of-change of G
 - fractional change < 10⁻¹² per year
 - gravitomagnetism (origin of "frame-dragging")
 - to 0.2% (from motions of point masses—not systemic rotation)
 - geodetic precession
 - to ≈ 0.5%
 - $-1/r^2$ force law
 - to 10⁻¹⁰ times the strength of gravity at 10⁸ m scales

The Reflector Positions

- Three Apollo missions left reflectors
 - Apollo 11: 100-element
 - Apollo 14: 100-element
 - Apollo 15: 300-element
- Two French-built, Soviet-landed reflectors were placed on rovers
 - Luna 17: Lunokhod 1 rover
 - Luna 21: Lunokhod 2 rover
 - similar in size to A11, A14
- Signal loss is huge:
 - ~ ≈10⁻⁸ of photons launched find reflector (atmospheric seeing)
 - ~ ≈10⁻⁸ of returned photons find telescope (corner cube diffraction)
 - >10¹⁷ loss considering other optical/ detection losses

815

Big Bang Theory: Making it Look Easy

photo by Dan Long

2014.04.15 Eclipse

The Full Parameterized Post Newtonian (PPN) Metric

- Generalized metric abandoning many fundamental assumptions
 - GR is a special case
 - Allows violations of conservations, Lorentz invariance, etc.

$$g_{00} = -1 + 2U - 2\beta U^{2} - 2\xi \phi_{W} + (2\gamma) + 2 + \alpha_{3} + \zeta_{1} - 2\xi)\phi_{1} + 2(3\gamma - 2\beta + 1 + \zeta_{2} + \xi)\phi_{2} + 2(1 + \zeta_{3})\phi_{3} + 2(3\gamma) + 3\zeta_{4} - 2\xi)\phi_{4} - (\zeta_{1} - 2\xi)A - (\alpha_{1} - \alpha_{2} - \alpha_{3})w^{2}U - \alpha_{2}w^{i}w^{j}U_{ij} + (2\alpha_{3} - \alpha_{1})w^{i}V_{i} + \mathcal{O}(\epsilon^{3})$$

$$g_{0i} = -\frac{1}{2}(4\gamma + 3 + \alpha_1 - \alpha_2 + \zeta_1 - 2\xi)V_i - \frac{1}{2}(1 + \alpha_2 - \zeta_1 + 2\xi)W_i - \frac{1}{2}(\alpha_1 - 2\alpha_2)w^iU - \alpha_2w^jU_{ij} + \mathcal{O}(\epsilon^{5/2})$$

$$g_{ij} = (1 + 2\gamma U + \mathcal{O}(\epsilon^2))\delta_{ij}$$

Simplified (Conservative) PPN Equations of Motion (EoM)

Newtonian piece

Post-Newtonian Spectrum: GR's Fingerprint

Example: Gravitomagnetic Effect

 The gravitomagnetic terms in the equation of motion can be collected into one and cast as a Lorentz acceleration:

$$\mathbf{a}_{i} = -\frac{\mu_{j}(2+2\gamma)}{c^{2}r_{ij}^{3}}\mathbf{v}_{i} \times (\mathbf{v}_{j} \times \mathbf{r}_{ij})$$

• Combine \mathbf{r}_{ij} with prefactor to get $4\mathbf{v}_i \times (\mathbf{v}_j \times \mathbf{g}_{ij})$; \mathbf{g}_{ij} is grav. accel.

- The $\mathbf{v}_i \times \mathbf{g}_{ii}$ term acts like a magnetic field
 - a mass in motion (mass current) produces a circulating gravitomagnetic field
 - another mass moving through this field feels a sideways (Lorentz) force
- Gravitomagnetism is necessary for GR frame independence
- If Earth has velocity V, and moon is V+u, two terms of consequence emerge:
 - One proportional to V² with 6.1 meter cos2D signal
 - One proportional to Vu with 5.8 meter cosD signal

Gravitomagnetism Spectrum

LLR Best Measure of Gravmag

- LLR determines cosD to 4 mm precision and cos2D to < 8 mm
 - Constitutes a $\approx 0.1\%$ confirmation of effect
- Full simultaneous parameter fit shows 0.2%
 - Soffel, Klioner, Müller & Biskupek, PRD 78, 024033 (2008)
- The same exact v×v×g term can be used to derive the precession of a gyroscope in the presence of a rotating mass current
 - captures the full "frame dragging" effect sought by GP-B (meas. to 19%; 1% goal): this is *not* different physics
 - see Murphy, Nordtvedt, & Turyshev, PRL 98, 071102 (2007) and Murphy, Space Science Rev. 148, 217 (2009)

Gravitomagnetism

A moving mass produces a gravitomagnetic field, which then couples to • other masses through a Lorentz-like force

 $F = mv \times B$

- Like *any* magnetic field, gravitomagnetism carries with *it* a strong frame • dependence
 - as in electromagnetism, the magnetic WARNING: complement to the electric f
- True that magnetic • transformed
 - a roi
 - but the magne

GEODETIC PRECESSION It be agnetic fields does not make these

ecessary

- The earth NO The Solar System Barycenter (SSB) frame produces a • gravitomaghetic field through which the moon moves
 - resulting in deflections of the lunar orbit
 - this field could be killed by shifting to the geocenter frame, but this is a poor choice of frame for analysis (not asymptotically flat)

But isn't this just transformation fluff?

- Since LLR is "performed" in the geocenter frame, where the gravitomagnetic field of the moving earth is nulled, can LLR *really* measure this physics?
- Actual process:
 - measure proper times in earth frame of photon transmit and receive
 - transform these to SSB times using $dt/d\tau = 1 + \frac{1}{2}v^2 \Delta\phi$
 - perform least-squares fit of data to equation of motion
- In other words, we don't apply *phenomenological* distortions to the orbit in moving to the SSB and then "magically" find we need them to fit our data (this would indeed be vacuous)
 - it is far more subtle: the simple time transformation is the only action
 - there are small $\cos D$ effects in the v^2 term, but at the few-mm level
- LLR needs the physics of gravitomagnetism to work correctly
 - if another experiment found an anomaly in gravitomagnetism at the 0.2% level, LLR would stand in conflict and require resolution
 - a conflict would indicate we don't even understand time transformation sufficiently

Equivalence Principle Flavors

• Weak EP

- Composition difference: e.g., iron in earth vs. silicates in moon
- Probes all interactions but gravity itself
 - Currently tested by LLR to $\Delta a/a < 10^{-13}$
 - Comparable to best lab tests by Eöt-Wash group at UW
 - but better choices of mass pairs offer stronger WEP test than LLR

Strong EP

- Applies to gravitational "energy" itself
 - Earth self-energy has equivalent mass ($E = mc^2$)
 - Amounts to 4.6×10^{-10} of earth's total mass-energy
 - Does this mass have M_G/M_I = 1.00000?
- Another way to look at it: gravity pulls on gravity
 - This gets at *nonlinear* aspect of gravity (PPN β)
- LLR provides the best way to test the SEP
 - pulsar timing is closest competitor

The Strong Equivalence Principle

 Earth's energy of assembly amounts to 4.6×10⁻¹⁰ of its total massenergy

$$M_{S.E.} = \frac{G}{c^2} \int \int \frac{\rho(\mathbf{r}_1)\rho(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d^3 \mathbf{r}_1 d^3 \mathbf{r}_2 \approx \frac{GM^2}{Rc^2}$$

The ratio of gravitational to inertial mass for this self energy is

$$\frac{M_G}{M_I} = 1 - (4\beta - 3 - \gamma)\frac{M_{S.E.}}{M} \equiv 1 - \eta \frac{M_{S.E.}}{M}$$

The resulting range signal is then

 $\Delta r = 13.1\eta \cos D$ meters

Currently η is limited by LLR to be $\leq 4.5 \times 10^{-4}$

Equivalence Principle Signal

- If the Equivalence Principle (EP) is Violated:
 - In effect, gravitational mass and inertial mass are not equal
 - Earth and Moon would fall at different rates toward the sun
 - Would appear as a *polarization* of the lunar orbit
 - Range signal has form of $\cos D$ (*D* is lunar phase angle: 0° = new; 180° = full)
- If, for example, Earth has greater inertial mass than gravitational mass (while the moon does not):
 - Earth is sluggish to move
 - Alternatively, pulled weakly by gravity
 - Takes orbit of larger radius (than does Moon)
 - Appears that Moon's orbit is *shifted* toward sun: cosD signal

EP Signal, Illustrated

WHAT COULD BE FOUND IN THE ORBITS

Strong EP Violation Spectrum if $\eta = 1$

2014.10.27

IWLR-19

21

Measuring G-dot & Significance

- Quadratic sensitivity:
 - If G changes with time, Kepler's law is broken
 - Range signal (semi-major axis) and period (phase) no longer run in lock-step
 - The rate of phase slippage grows linearly in time
 - The phase offset grows quadratically in time
 - LLR sensitivity now limits change to $\leq 10^{-12}$ /yr variation
 - Less than 1% change over age of Universe
- Extra-dimension—motivated explanations of Universal acceleration (AdS/CFT) result in evolution of G and equation-of-state parameter w
 - Steinhardt & Wesley (2010) claim that factor-of-two improvements in *G*-dot and *w*' over today's limits will rule out AdS/CFT as mechanism for acceleration at > 3σ

G-dot Spectrum at 10⁻¹⁰/yr

Non-gravitational Science from LLR

• Lunar Interior

- liquid core of ~350 km radius
- dissipation at core-mantle boundary
- see work by Williams, Rambaux
- Coordinate Systems and Earth Orientation
 - contributes along with VLBI, GPS
 - see talk by J
 ürgen M
 üller in Session 13
- Dusty Reflectors?
 - overall 10× signal loss; sharp (10×) full moon effect; eclipse recovery speak to absorption at corner cube and thermal effect
 - ~50% dust layer could account for observations

Historical Normal Point Contributions

Normal Points excluding Apollo 15

Distribution of Normal Points

States & States

LLR Through the Decades

Previously 200 meters

Key Step: Model Development

- Extracting science from LLR data requires a model that includes *all the physics* that can influence the Earth-Moon range
 - N-body relativistic gravity in solar system
 - body figure torques
 - site displacement phenomena
- The best LLR models currently produce ≥ 15 mm residuals
 - JPL; Hannover; PEP (Harvard/CfA); Paris have working models
 - Many few-millimeter effects may not yet be included (varies by model)
 - crustal loading phenomena from atmosphere, ocean, hydrology
 - geocenter motion (center of mass with respect to geometry)
 - tidal model needs improvement
 - atmospheric propagation delay model needs updating
 - Earth orientation models could better incorporate LLR data
 - multipole representations of Earth and Moon mass distributions need improvement

Summary & Next Steps

- GR effects on lunar orbit are at 10 m scale
 - GM/Rc^2 is 10^{-8} in solar neighborhood, times 4×10^8 m orbit
- Present model capabilities achieve ~15 mm residuals and sub-cm narrow-band constraints
 - thus ~0.1% tests of GR
- Prospect of millimeter-quality data motivates push to model improvement